PHARMACODYNAMICS-I

DRUG RECEPTORS & SIGNALING MECHANISMS

Dr. AWAIS IRSHAD

By the end of this lecture Student should be able to :

Define the drug receptor, types, location and

mechanism of receptor regulation.

>Enlist the transmembrane signaling

methods by which drug receptor

interactions exert their effects.

What is Pharmacodynamics ?

Pharmacodynamics is a branch of pharmacology that deals with the study of the biochemical and physiological effects of drugs and their mechanisms of action.

A RECEPTOR

A RECEPTOR structure

- Ligand recognition site
- Inner catalytic domain

RECEPTOR FAMILIES

Type I (Ion Channel-Linked receptors)

Type II (G-Protein coupled receptors)

Type III (Enzyme-Linked receptors)

Type IV (Receptors linked to gene transcription)

RECEPTOR FAMILIES

	Type I	Type II	Type III	Type IV
Location	Membrane	Membrane	Membrane	Nucleus
Coupling	Direct	G-Protein	Direct	Via DNA
Synaptic transmission	Very Fast	fast	slow	Very slow
Response	milliseconds	Seconds	minutes	Hours or days
Examples	Nicotinic receptors	Muscarinic receptors Adrenerg ic receptors	Insulin receptors	Estrogen Steroid receptors
Effectors	channels	Channels/	Enzymes	DNA

enzymes

TYPE I: Ion Channel-Linked receptors Ligand gated ion channels Ionotropic receptors

- Located at cell membrane
- Directly activated by ligand binding
- Directly related to ion channels.
- Involved in very fast synaptic transmission.
- Response occurs in milliseconds.

Channel-Linked
lonotropic
Receptor LigandGated-Ion Channel

e.g. nicotinic receptors
that are activated by
occupancy of a ligand
as acetylcholine.

Type II: G-Protein coupled receptors Metabotropic Receptor

- The largest family that accounts for many known drug targets
- Located at cell membrane
- Coupled to intracellular effectors via Gprotein
- Response through ion channels or enzymes.
- Involved in rapid transduction
- Response occurs in seconds.
- E.g. Muscarinic receptors of Ach

Type III (Enzyme-Linked receptors) (Tyrosine Kinase-linked receptor)

- Located at cell membrane
- Linked to enzyme (with intrinsic enzymatic activity)
- Response occurs in minutes to hours.
- Involved in response to hormones, growth factors.
- They control many cometabolism and grow

Type III (Enzyme-Linked receptor)

- o Activation of Type III receptors results in
 - Activation of kinases as tyrosine kinase with phosphorylation of tyrosine residue on their substrates and activation of many intracellular signaling pathways in the cell.

E.g. Insulin receptors

Type IV: Nuclear Geografienscription receptrated intracellularly

- Directly related to DNA (Gene transcription).
- Activation of receptors either increase or decrease protein synthesis
- Response occurs in hours or days and persists longer.
- Their natural ligands are lipophylic hormones; steroids, thyroids, estrogen.

What are the mechanisms of drug action?

What are the mechanisms of drug action?

Drugs can produce their actions by one of the following mechanisms:

- Receptor-mediated mechanisms (Binding with biomolecules):
 - Receptors = Biomolecules = Targets
 - Targets are mostly <u>protein in nature</u>.
- Non receptor-mediated mechanisms
 Physiochemical properties of drugs.

Non receptor-mediated mechanisms Drugs can produce actions by:

Chemical action

- Neutralization of gastric acidity by antacids.

Physical action

- Osmotic diuretics.
- Purgatives used in treatment of constipation e.g. MgSO4

Receptor-mediated mechanisms

Drugs can produce actions by binding with biomolecules (Protein Targets)

Protein targets for drug binding

- Structural protein
- Regulatory proteins
 - Physiological receptors
 - Enzymes
 - lon channels
 - Carriers

Recepto

Is a special target macromolecule that binds the drug and mediates its pharmacological actions.

Where are receptors located?

- Cell membrane.
- Cytoplasm.
- · Nucleus.

Enzymes

- The drug competes with the natural endogenous substrate for the enzyme.
- E.g. Anticholinesterases inhibit acetylcholinesterase thus producing cholinomimetic action.
- Neostigmine reversibly compete with ACH for acetyl cholinesterase enzyme at motor end plate (neuromuscular junction).
- Organophosphates irreversibly competes with ACH for acetyl cholinesterase enzyme.

Ion channels

- Drugs bind to alter channel function (by opening or blockade).
- Channels are responsible for influx or outflux of ions through cell membranes.
- They are activated by alteration in action potential.

Ion channels

e.g. local anesthetics:

act by blocking sodium (Na+) influx through Na channel in nerve fibers (Na channel blockers).

REGULATO

ION CHANN

Local Anesthetics block Na influx through Na channel

in nerve fibers. They are Na chargel Blockers.

Na+

Ion channels

e.g. Sulfonylurea drugs (antidiabetic drugs):

block potassium channels in pancreatic beta cells resulting in depolarization and opening of calcium channels and insulin secretion.

Carrier molecules

- Drugs bind to such molecules to alter their transport ability.
- Responsible for transport of ions and small organic molecules between intracellular compartments, through cell membranes or in extracellular fluids.
- e.g. Na pump (Na+/K+ ATPase) blocked by digoxin.
- e.g. dopamine transporter blocked by cocaine.

Carrier molecules

Digoxin:

blocks Na efflux via Na+/K+ pump or sodium- potassium pump (Na+/K+-ATPase); used in the treatment of heart failure.

Cocaine:

- blocks transport or reuptake of (<u>catecholamines</u> <u>mainly dopamine</u>) at synaptic cleft.
- The dopamine transporter can no longer perform its reuptake function, and thus

What are the binding Forces between drugs and receptors?

- lonic bond.
- Van-Dar-Waal.
- Hydrogen bond.
- Covalent bond.

Affinity

Ability of a drug to combine with the receptor.

D + R D-R complex Effect.

Efficacy (Intrinsic Activity)

- Capacity of a drug receptor complex
 (D-R) to produce an action.
- is the maximal response produced by a drug (E max).

SIGNALING MECHANISMS

What is Agonist?

What is full Agonist?

What is Partial Agonist?

What is Antagonist?

What are the types of Antagonist?

References:

- B G Katzung. Basic and clinical pharmacology, 14th edition pp 20:400
- Lippincott illustrated reviews pharmacology, 7th edition pp 23-366
- 3. Katzung and Trevor's pharmacology examination and board review pp 16-25

Thank you

Adapt it with your needs and it will capture all the audience attention.