

Brain (CNS) Perception and processing of sensory stimuli (somatic/autonomic) Execution of voluntary motor responses (somatic) Regulation of homeostatic

Nerves (PNS)

Fibers of sensory and motor neurons (somatic/autonomic)

mechanisms (autonomic)

Digestive tract (ENS)

The enteric nervous system (ENS), located in the digestive tract, is responsible for autonomous functions and can operate independently of the brain and spinal cord.

Spinal cord (CNS)

Initiation of reflexes from ventral horn (somatic) and lateral horn (autonomic) gray matter Pathways for sensory and motor functions between periphery and brain (somatic/autonomic)

Ganglia (PNS)

Reception of sensory stimuli by dorsal root and cranial ganglia (somatic/autonomic)

Relay of visceral motor responses by autonomic ganglia (autonomic)

Nervous System

Overview

- 1. Neuroanatomy
- 2. Cerebral circulation
- 3. CSF circulation
- 4. Monroe-Kellie Doctrine
- 5. Cerebral blood flow
- 6. Cerebral perfusion pressure
- 7.

Cortical gyrl and suici (lateral view)

central sulcus and the hand **Employ** auditory association area

Cortical gyrl and sulci (medial view)

Pathway of CSF flow

Monroe-Kellie Doctrine

Volume of Single Intracranial Substance (ml)

Cerebral Perfusion Pressure

CPP = cerebral perfusion pressure

MAP = mean arterial pressure

P = intracranial pressure (normally 0-10 mmHg)

CVP = central venous pressure

ICP increased by:

- Intracranial bleeding
- · cerebral edema
- · tumor

Increased ICP:

- · collapses veins
- · decreases effective CPP
- · reduces blood flow

Cerebral Blood Flow

Q	Flow rate	
P	Pressure	
г	Radius	
η	Fluid viscosity	
1	Length of tubing	

$$Q = \frac{\pi \Pr^4}{8\eta l}$$

- · Direct relationship between:
 - o Flow.
 - CPP
 - Calibre of cerebral vessels.

Where

- o π is the mathematical constant.
- P the pressure gradient which is the CPP.
- r the radius/calibre of blood vessel.
- η the dynamic viscosity of blood.
- I the length of the blood vessel.

Cerebral autoregulation

Radius of cerebral arterial blood vessels regulated by:

- Cerebral metabolism rate of O2
- Carbon dioxide and oxygen
- Autoregulation
- Neurohumeral factors

© Lineage

Saccular (Berry) Aneuryms of the Circle of Willis

Cerebral arteries - Cerebral aneurysm

SAH

IVH

16

Effects of increased ICP

Herniation

1) Uncal (descending transtentorial)

- 2) Central
- Cingulate (subfalcine)
- Transcalvarial
- 5) Upward (ascending transtentorial)
- 6) Tonsillar

Tentorium cerebelli

Foramen magnum

Thanks!

Any questions?

