

Prepared by

Kosrat Qadir Muhammad Salam Kayhan Ahmad Supervised by

Dr. Hani Hadi

Key Words

Brief Introduction

- What is β lactam ring?
- History of β lactam Antibiotics

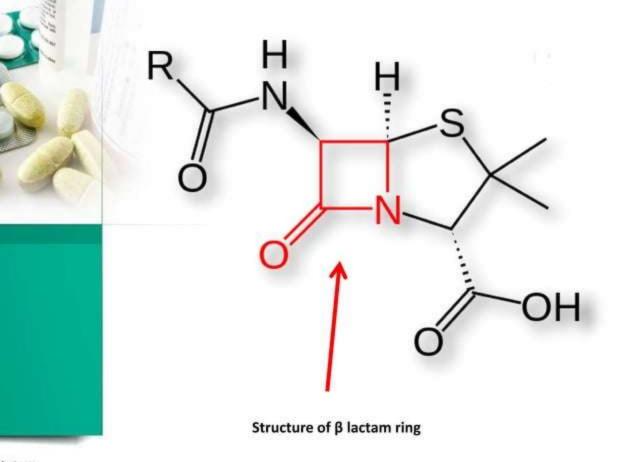
Cell wall synthesis inhibitors

- Penicillins
- Cephalosporins
- Carbapenems
- Monobactams
- Vancomycin

β lactam Antibiotics

Non β lactam Antibiotic

Introduction



What is β lactam ring?

 The β-lactam ring is part of the core structure of several antibiotic families

 Nearly all of β lactam antibiotics work by inhibiting bacterial cell wall biosynthesis

This has a lethal effect on bacteria (bactericidal)

History of **B** lactam Antibiotics

Alexander Fleming accidentally discovered

the first antibiotic in 1928. He found that a green mold

called Pennicilium notatum had contaminated Petri dishes in his lab ...

and were killing some of the bacteria he'd been growing.

Cell Wall **Synthesis** Inhibitors

Penicillins

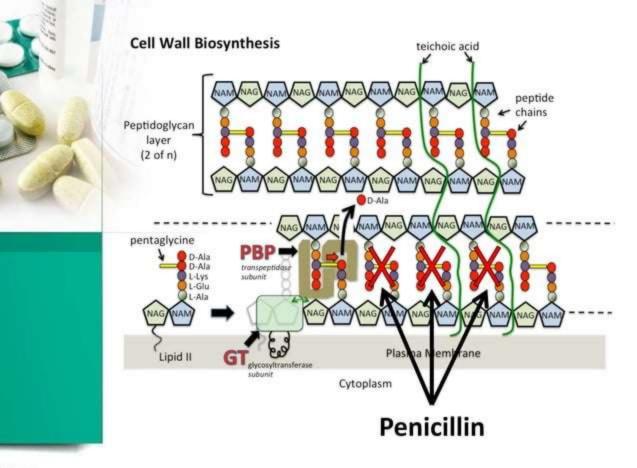
B Lactamase-sensitive Penicillins

- Penicillin G/V
- Ampicillin
- Amoxicillin

Anti-staphylococcal Penicillins

- Oxacillin
- Nafcillin
- Dicloxacillin

Anti-pseudomonal Penicillins


- Ticarcillin
- Piperacillin

Mechanism of Action:

Bacterial cell wall is cross-linked polymer of polysaccharides and peptides.

Penicillins interact with cytoplasmic membrane-binding proteins (PBPs) to inhibit transpeptidation reactions involved in crosslinking, the final steps in cell-wall synthesis.

Indications:

- Gram +ve organisms (S. pneumoniae, S. pyogenes, Actinomyces)
- Gram –ve organisms (N. meningitidis)
- Spirochetes (T. pallidum)

Mechanism of Resistance:

Bacteria produce an enzyme called penicillinase (B lactamase) which breaks the β lactam ring structure, rendering the drug ineffective.

Breaking of the beta lactam ring

❖β lactamase sensitive

To overcome this sensitivity, they are used in combination with β lactamase inhibitors, to protect the antibiotic from destruction by the B lactamase:

- -Clavulanic acid
- -Sulbactam

Adverse Effects:

- Hypersensitivity reaction (skin rash, anaphylaxis)
- Hemolytic anemia
- Diarrhea (superinfection)
- Nephritis

Ampicillin and Amoxicillin

Mechanism of Action:

- Same as Penicillin. Wider spectrum, β
 lactamase sensitive. Also used in
 conjunction with clavulanic acid to prevent
 destruction by B lactamase.
- Amoxicillin has greater oral bioavailability than Ampicillin.

Ampicillin and Amoxicillin

❖Indication:

Extended-Spectrum penicillin:
 Listeria monocytogenes, Salmonella,
 Enterococci, E. coli, H. pylori.

Ampicillin and Amoxicillin

Adverse Effects:

- HSR
- Skin rash
- · Pseudomembranous colitis

Anti-staphylococcal Penicillins (Oxacillin, Nafcillin, Dicloxacillin)

❖ Mechanism of Action:

 Same as Penicillin. Narrow spectrum; β lactamase resistant.

Anti-staphylococcal Penicillins

❖Indication:

Staphylococcus aureus (except MRSA)

Anti-staphylococcal Penicillins

Adverse effects:

- HSR
- Interstitial nephritis

Anti-staphylococcal Penicillins

Mechanism of resistance:

 MRSA has altered Penicillin-binding protein target site

Anti-pseudomonal Penicillins (Piperacillin, Ticarcillin)

Mechanism of action:

Same as Penicillin, extended spectrum. β
lactamase sensitive, used with β lactamase
inhibitor.

Anti-pseudomonal Penicillins

❖Indication:

Pseudomonas spp. and Gram –ve organisms

Anti-pseudomonal Penicillins

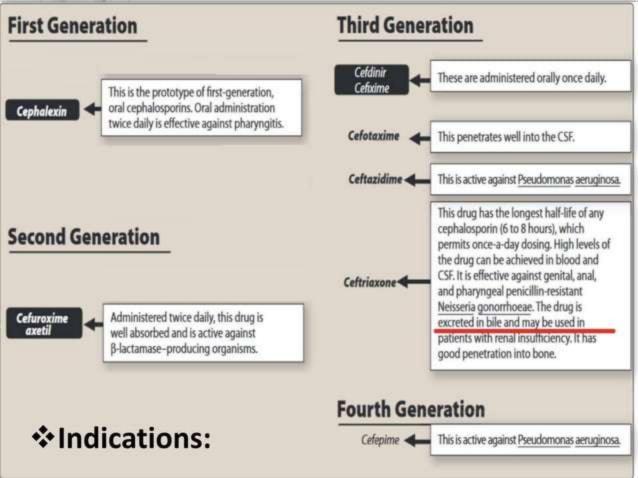
*Adverse effects:

HSR

They have structural similarities to Penicillins

Cephalosporin

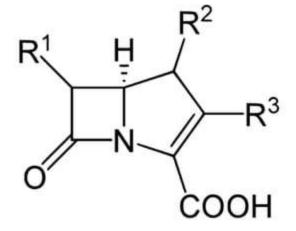
inactive metabolites


Mechanism of Action & Resistance:

Are β lactam antibiotics that are structurally and functionally related to Penicillins.

Cephalosporins have the same mechanism of action as Penicillins and are affected by the same the same resistance mechanism

- First generation (Moderate spectrum)
- Cefazolin · Cephalexin
- Second generation (Moderate spectrum)
- Cefaclor · Cefuroxime
- Third generation (Broad spectrum)
- Cefixime · Cefotaxime · Ceftriaxone Ceftazidime
- Fourth generation (Broad spectrum)
- Cefipime


❖Adverse effects:

Similar to Penicillins.

Patients who have anaphylactic response to penicillins should NOT consume cephalosporins due to cross reactivity.

Carbapenems

Mechanism of action:

- Same as penicillin and cephalosporin.
- Broad spectrum, resistant to B lactamase.
- Imipenem is quickly degraded by renal dehydropeptidase. So it's always administered with cilastatin (inhibitor of renal dehydropeptidase) to prevent the degradation of imipenem.

❖Indications:

- Gram +ve cocci.
- Gram ve rods
- Anaerobes

Indications cont'd:

- Are important for use in severe lifethreatening infection or when other drugs have failed.
- Meropenem has decreased risk of seizures and is stable to renal dehydropeptidase.

Mechanism of resistance:

 Inactivated by carbapenemases produced by certain types of bacteria like:

E.coli , Klebsiella pneumonia

Adverse Effects:

- GI distress
- Rash
- CNS toxicity (seizures) at high doses.

Monobactams

Monobactam (Aztreonam)

❖ Mechanism of action:

- Prevents peptidoglycan cross linking like penicillins & cephalosporins.
- Resistant to B-lactamase.
- Synergistic with aminoglycosides.
- NO cross-allergenicity with penicillins.

Monobactam (Aztreonam)

❖Indication:

- Gram –ve rods only. (e.g. Pseudomonas aer.)
- No activity against gram +ve rods or anaerobes.
- Use for patients with penicillin allergy or those with renal insufficiency who can't tolerate aminoglycosides.

Monobactam (Aztreonam)

Adverse effects:

Usually non-toxic , occasional GI upset.

Sources:

❖ Books:

- Lippincott's Illustrated Reviews:
 Pharmacology, 6th Edition, by Karen Whalen,
 2014
- Kaplan Medical, USMLE Step 1 Lecture Notes 2018, Pharmacology
- · Handbook of First Aid drugs

Sources:

Websites:

- www.Wikipedia.com
- www.google.com/images
- www.ncbi.nlm.nih.gov
- www.sciencedirect.com

Thanks for your attendance

