Sensory system

- is a functional system of neurons which enables <u>perception of external or</u> <u>internal environment changes</u>,
- Conduction of impulse to CNS,
- its <u>analyses</u>,
- formation of <u>sensation</u>

3 departments of analyser

Peripherial (receptors)

Conducting pathways

Central (sensory cortex)

Functions of peripheral department

Coding of information

Primary analyses

CODING OF INFORMATION

 Perception of sensations or transformation of different stimuli (mechanical, chemical) into nervous impulses (AP)

Sponsored

Medical Lecture Notes - All Subjects

USMLE Exam (America) - Practice

E_neutron

PRIMARY ANALYSES

ADEQUATE OR NOT?

FORCE

NEWNESS

Functions of conducting department

Conveys impulse to the cortex

 Performs <u>secondary analysis</u> to form <u>reflex reactions</u> (withdrawal, orientational reflex) & <u>define important</u> <u>information</u> (lateral inhibition in thalamus)

Functions of peripheral & conducting departments

- Defence reflexes (blinking, lacrimation, withdrawal)
- Orientational behaviour
- Homeostasis
- Maintaining state of awakefulness for the brain (activation of RF)

Functions of cortex department

- Higher analyses transformation of nervous impulse energy into perceptions
- Recognizing
- Decision making
- Adequate behaviour (+ associative cortex)

Classifications of receptors

- By the mechanism of excitation (primary & secondary sensitive)
- By the location in the body (external, internal, proprio-)
- By the nature of the stimulus (mechanical, chemical, baro-, thermo-)
- By the nature of caused sensations (visual, olfactory, gustatory, auditory)

Classifications of receptors

- By the distance from the stimulus (distant, contact)
- By the velocity of adaptation (slow adaptive, quickly adaptive, nonadaptive)

Pacinian Vibration Detector

Concentric layers of protection

Fig. 3-1

Coding of information in the receptors

- Binar code
- Coded parameters:

FORCE OF THE STIMULUS

(frequency & spacial coding)

DURATION OF THE STIMULUS

THRESHOLDS OF RECEPTORS SENSITIVITY

ABSOLUTE

DIFFERENTIATIONAL
 (differentiational threshold of <u>force</u>, <u>spacial</u> & <u>temporal</u> differentiational thresholds)

ABSOLUTE THRESHOLD

 MINIMUM FORCE OF STIMULUS CAUSING SENSATIONS

Differentiational threshold of force

- Weber-Fexner law the increase of stimulus to be perceptible must exceed the acting stimulus by a definite proportion.
- △I/I=K

Touch receptors - Hair Follicle Ending

Responds to hair displacement. Wraps around hair follicle in hairy skin.

Touch receptors - Meissner corpuscle

Responds to vibration. Most sensitive in 20-40 Hz rangeDermis of glabrous skin.

Receptors of pressue -Ruffini Endings

Dermis of both hairy and glabrous skin

Receptors of pressue -Krause corpuscle

Lips, tongue, and genitals.

Vibration receptors -Pacinian corpuscle

Responds to vibration.

Most sensitive in 150-300

Hz range Deep layers of dermis in both hairy and glabrous skin. Deep layers of dermis in both hairy and glabrous skin.

Free nerve endings

Different types of free nerve endings that respond to mechanical, thermal or noxious stimulation.

