

Genetics

- science of heredity
- factors affecting the transmission of characteristics from one generation to another
- it attempts to describe similarities and differences (variation) among organisms.
- it also explains the characteristics that are transmitted from one generation to the next generation offspring

<u>Heredity</u>

- passing of traits from parents to offspring

Inherited

 traits that are passed from parents to their offspring

Traits

– characteristics of an organism

2 Kinds of Characteristics

- 1. Species Characteristics
 - similar to those of other humans

- 2. Individual Characteristics
 - characteristics that make an individual member of a species different from another

Factors that Affect Individuality

- 1. Biological Inheritance/ Heredity
 - key difference between species
 - makes us similar to, and also different from, your siblings or other people
 - transmission of genetic material or characteristics from parents to offspring

2. Environment

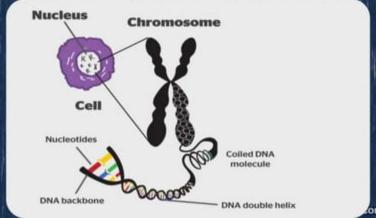
- may contribute much to an organism's nature and behavior
- may affect an individual's growth

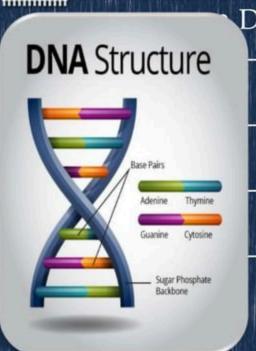
Theory of Inheritance

Theory of Blending Inheritance

 idea that maternal and paternal characteristics blend or mix to produce the characteristics found in the offspring

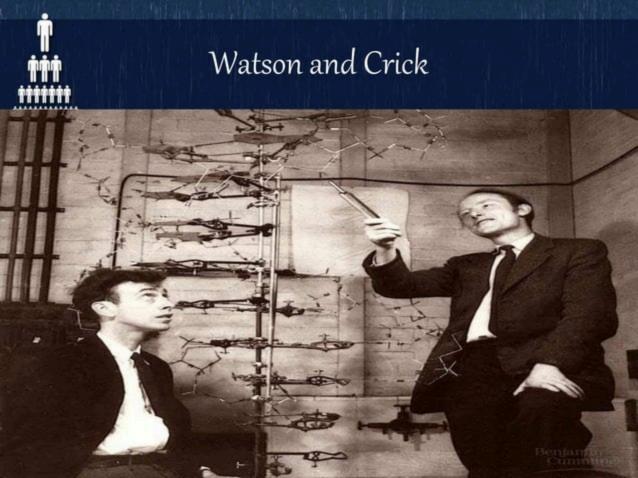
Particulate Model of Heredity


 Mendel's idea that heredity could be governed by "particles" that retain their identity from generation to generation


"Threads of Life"
- thread-like structures
in the nucleus of a cell that
control heredity

Composition of Chromosomes

Deoxyribonucleic acid (DNA)


- is the chemical that makes up chromosomes
- double-helix shape / twisted ladder
- made up of sugar and phosphates
- four kinds of nitrogen bases

A - Adenine

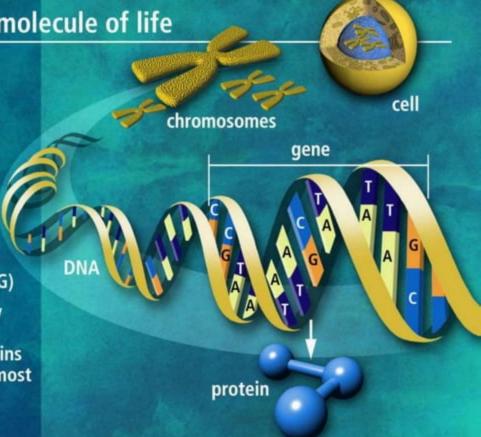
T - Thymine

G - Guanine

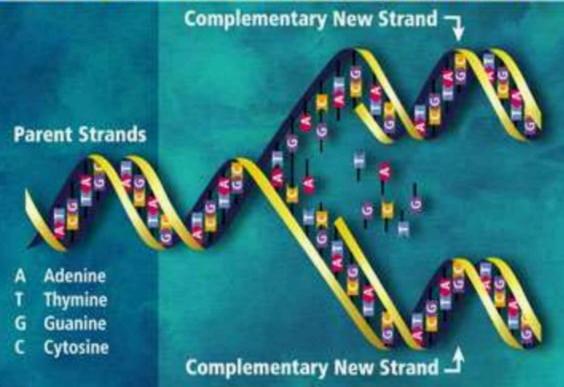
C - Cytosine

DNA the molecule of life

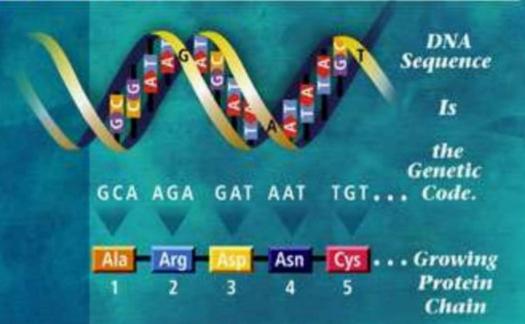
Trillions of cells


Each cell:

46 human chromosomes


2 meters of DNA

3 billion DNA subunits (the bases: A, T, C, G)


Approximately 30,000 genes code for proteins that perform most life functions

DNA Replication Prior to Cell Division

DNA Genetic Code Dictates Amino Acid Identity and Order

Genetic Code

- determines the kind of gene that forms
- controls the inherited traits

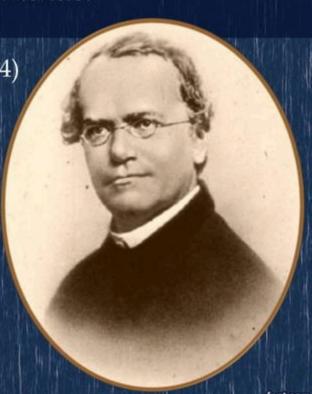
<u>Allele</u> – is an alternative/ different forms of a gene (one member of a pair)

Genes

- is a part of the chromosome that controls inherited traits
- can determine the height, eye color, hair color, and many other characteristics
- also controls the life processes of the cells,

Gregor Mendel

Austrian monk (1822 – 1884)


> plant breeder

> Father of Genetics

First person to study genetics methodically

done research on heredity with garden peas from 1856-1868 and published in 1866

> 1900 he's research was rediscovered

Mendel's Experiment

- Experimented with Garden peas:
- grows quickly
- 2. reproduce by self-pollination
- possess characteristics that can easily be recognized – height, color of flowers, seed shape
- pollination can be controlled in this group of plants w/ minimum work
- can produce enough offspring for study purposes

Mendel's Experiment

- Cross-pollination procedure with pure tall x pure small plants
 - deliberately cross two plants to transfer pollen from one self-fertilizing flower to another

Parent generation (P₁)

the individuals that give rise to the first generation

First-filial generation (F₁)

- the first generation in the line of descent

Dominant and Recessive

Dominant

- traits that appeared
- gene that always shows itself

Recessive

- form of trait that was masked
- hidden gene

Mendel's Principle

- 1. Concept of Unit Character
- 2. Principle of Dominance and Recessiveness
- 3. Law of Segregation

Concept of Unit Character

 Each organism has a pair of heredity factors – called as genes

 All characteristics of organisms are inherited as independent units

 Genes of one characteristic are not influenced by the genes for any other characteristics

Principle of Dominance and Recessiveness

- Law of dominance
 - one factor in a pair may mask the expression of the other factor
 - One trait was stronger than the other dominant trait
 - The mask factor is known as recessive trait

Principle of Dominance and Recessiveness

- An organism with at least one dominant allele for a particular form of a trait will exhibit that form of the trait
- An organism with a recessive allele for a particular form of a trait will exhibit that form only when the dominant allele for the trait is not present.

Law of Segregation

 able to postulate that the traits may be traced back to the sperm and egg cells from the parent – contributes one heredity factor

 States that a pair of genes is segregated or separated during the formation of sex cells.

Law of Segregation

During gamete formation, the alleles for each gene segregate from each other, so that each gamete carries only one allele for each gene.

Fundamentals of Genetics

 Alleles – different copies or forms of genes controlling a certain trait

Homozygous – alleles on a certain trait in an organism are the same (pure)

ex. homozygous for tallness - (TT)

both dominant or (tt) both recessive

Heterozygous – alleles for the same trait are different (hybrid)

ex. heterozygous for tallness – (Tt)

1 gene for tallness and 1 for shortness

Genotype & Phenotype

Capital letter is used for the allele indicating a dominant trait; lowercase letter for the contrasting recessive allele

Genotype

- organism's genetic make-up
- combination of genes of an organism

Phenotype

- physical trait of an organism

Genotype & Phenotype

Traits	Symbol for Trait	Alleles	Phenotype	Genotype
Plant Height	TT Tt	T, T T, t	tall tall	homozygous tall heterozygous tall
Seed Shape	Tt RR Rr rr	T, t R, R R, r r, r	short round round wrinkled	heterozygous short homozygous round heterozygous round wrinkled
Pod Shape	II Ii ii	I, I I, i i, i	inflated inflated constricted	homozygous inflated heterozygous inflated constricted

For each genotype, indicate whether it is heterozygous or homozygous

AA	li
Bb	jj
Cc	Kk
Dd	LI
Ee	MM
ff	nn
GG	00
HH	Pp

fppt.com

For each genotype, determine what phenotypes would be possible

Purple flowers are dominant to white
PP
Pp
pp
Brown eyes are dominant to blue
BB
bb
BL B

For each genotype, determine what phenotypes would be possible

Round se	eds are dominant to wrinkled
	Rr
	RR
	rr
Bobtails a	are recessive to long tails
	Tt
	tt
	그렇다 봤는데하면 어린 나는 사람이 있다.

For each phenotype, list the genotypes

Straight hair is dominant to curly

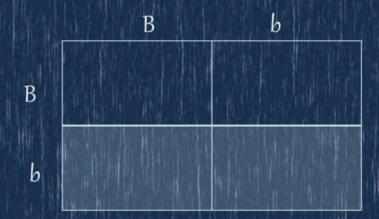
____straight

____straight

____curly

Tail spikes are dominant to plain tails

____spikes


____spikes

____plain

(One-factor Cross)

- Using Punnett Square
 - use mathematical probability to help predict the genotype and phenotype combinations in genetic crosses.

(One-factor Cross)

- Start with the Parents: Write the genotypes of the two organisms that will serve as parents in a cross.
- 2. Figure out the Gametes: Determine what alleles would be found in all of the possible gametes that each parent could produce.
- Line them up: Draw a table with enough squares for each pair of gametes from each parent.
- 4. Write out the New Genotypes: Fill in the table by combining the gametes' genotypes
- 5. Figure out the Results: Determine the genotype and phenotype of each offspring. Calculate the percentage of each

fppt.com

(One-factor Cross)

- How are Dimples Inherited?
 - 1. Write the last four digits of your cellular phone number. These four random digits represents the alleles of a gene that determines whether a person will have a dimples. Odd digits represents the allele for the dominant trait of dimples. Even digits represents the allele for the recessive trait of no dimples.
 - Use the first two digits to represent a father's genotype. Use the symbols D and d to write his genotype.

fppt.com

(One-factor Cross)

How are Dimples Inherited?

- Use the last two digits the same way to find the mother's genotype. Write her genotype.
- Using the Punnett square, determine the probability that their child will have dimples.
- Determine the class average of the percent of children with dimples.

(One-factor Cross)

1. What would the resulting offspring of a cross between a long tailed cat (HH) with short tailed cat (hh) be?

 Cross two individuals: Brown dominant to black – one that is homozygous recessive and the other has a dominant phenotype, but had a mother with recessive phenotype

Monohybrid Cross (One-factor Cross)

3. Rr x rr

Determine the genotype, phenotypes and give the ratio of its genotype.

What percentage of the offspring will be round?

fppt.com

Monohybrid Cross (One-factor Cross)

4. RR x Rr

Determine the genotype, phenotypes and give the ratio of its phenotype.

What percentage of the offspring will be round?

Monohybrid Cross (One-factor Cross)

5. Bb x Bb

Determine the genotype, phenotypes and give the ratio of its genotype.

What percentage of the offspring will be round?

(One-factor Cross)

- 6. Two parents are having a child. The father has a hybrid freckles. The mother does not have freckles. Find the possibility of the child having freckles.
- 7. In humans, the alleles for six fingers (F) is dominant to the allele for five fingers (f). If both parents are heterozygous for six fingers, what is the probability that their first child will be "normal"

RY

Ry

rY

Dihybrid Cross

(Two-factor Cross)

- is a genetic cross that involves two sets of traits.

Ry
Ry
ry
ry

fppt.com

Dihybrid Cross

(Two-factor Cross)

Principle of Independent Assortment

 states that genes for different traits can segregate independently during the formation of gametes and do not influence each other's inheritance.

Dihybrid Cross

(Two-factor Cross)

- 1. Select the letters to represent the genes.
- 2. Write the genotypes of P₁
- 3. Determine the possible gametes from P
- 4. Make a punnett square. Enter the gametes
- 5. Complete the punnett square by combining the gametes forming alleles in the appropriate boxes.
- 6. Figure out the Results: Determine the genotype and phenotype of each offspring. Calculate the percentage of each

Dihybrid Cross (Two-factor Cross)

RY Ry rY ry

RY RRYY RRYY RRYY RrYY

fppt.com

Dihybrid Cross

(Two-factor Cross)

- 2. In summer squash, white fruit color (W) is dominant over yellow fruit color (w) and disk-shaped fruit (D) is dominant over sphere-shaped fruit (d).. If a squash plant true-breeding for white, disk-shaped fruit is crossed with a plant true-breeding for yellow, sphere-shaped fruit, what will the phenotypic and genotypic ratios be for:
- a. the F_1 generation? b. the F_2 generation?


Dihybrid Cross (Two-factor Cross)

3. RrGg x rrgg

Genotype: Phenotype: Genotypic Ratio:

Dihybrid Cross

(Two-factor Cross)

4. Two long and purple flowered pea plants.

LlPp x LlPp

Determine the genotype, phenotypes and give the ratio of its phenotype.