
FACTORS MODIFYING DRUG

ACTION

Presented By
Dr. Manoj Kumar
Assistant Professor
Department of Pharmacology
Adesh Medical College & Hospital Ambala Can't

INTRODUCTION

- Same dose of a drugs can produce different degrees of responses – (1) person to person; and (2) also same person under different situations.
- Individuals differ in pharmacokinetic handling of drugs varying plasma/target site conc. – Metabolized drug Vs excreted.
- Variation in number of receptors, coupling proteins or other components
- Variations in hormonal/neurogenic tone or concentrations – atropine, propranolol, captopril

THE FACTORS MODIFY DRUG ACTION EITHER

- Factors modify drug action –
- Quantitatively action increased or decreased
- Qualitatively: Altered response allergic reaction or idiosyncrasy

FACTORS MODIFYING DRUG ACTION

- Physiological Factors
- Pathological Factors
- Genetic Factors
- Environmental Factors
- Psychological factors
- Drug interactions
- Tolerance

FACTORS MODIFYING DRUG ACTION

Physiological Factors

- Age & weight
- Gender
- Pregnancy/Lactation
- Food

1. AGE

Newborn:

- ↓ gastric acid secretion
 - GIT absorption of Ampicillin & Amoxicillin greater
- ↓liver enzymes
 - Inadequate glucouronidation of Chloramphenicol ---Gray baby syndrome
- ↓ Plasma protein binding
- J GFR & tubular secretion
- Immature BBB
 - Sulfonamides ----- Hyperbilirubinemia & Kernicterus

CHILDREN

- Tetracyclines
 - Permanent teeth staining
- Corticosteroids
 - Growth & development retardation
- Antihistaminics
 - Hyperactivity

Young's formula: Age (yrs) x Adult dose

Age (yrs) +12

Dilling's formula: Age (yrs) x Adult dose

20

Example: (8 years / 8 years + 12) x 500 mg - (8 x 500) / (8 +

12) = 200 mg

CHILDREN

Clark's formula:

Child's weight x Adult dose 70

E.g. 40 kg / 70 x 500 mg 2000 / 7 = 285 mg

Body surface area (BSA)

Dubois formula:

BSA (m²) = BW (kg) $^{0.425}$ x Height (cm) $^{0.725}$ x 0.007184

ELDERLY

- ↓ Liver function
 - Diazepam, theophylline
- ↓ Kidney function
 - Digoxin, lithium
- ↓ Plasma protein binding
- o †sensitivity to CNS depressants
 - Diazepam, morphine

2. GENDER

Males

- Testosterone increases the rate of biotransformation of drugs.
- Beta blockers, methyldopa, diuretics –
 sexual function interference
- Gynaecomastia Metoclopramide, chlorpromazine, ketoconazole etc.

GENDER CONT...

Female

- Females have smaller body size required doses are lower
- Decreased metabolism of some drugs (Diazepam)
- Females are more susceptible to autonomic drugs (estrogen inhibits choline esterase)
- Digoxin in maintenance therapy of heart failure mortality higher in female.

3. PREGNANCY

- Causes several physiological change that influence drug disposition.
- ↑ aVd (total body water may increase by up to 8 liters)
 providing large space for water soluble drugs.
 - Maternal plasma albumin concentration is reduced, more free drugs will be available
- ↑ Cardiac output
- ↑ GFR & renal elimination of drugs
- ↑ Metabolism of some drugs
- Lipophilic drugs cross placental barrier
- Pregnancy particularly 3rd trimester

4. PATHOLOGICAL FACTORS

 Diseases cause individual variation in drug response

Liver Disease

- Prolong duration of action: ↑ t_{1/2}
- ↓ Plasma protein binding for warfarin, tolbutamide
 → adverse effects
- ↓ Hepatic blood flow → ↓ clearance of morphine, propanolol
- Impaired liver enzymes → ↓ dose of Diazepam,
 rifampicin, theophylline

HEPATOTOXIC DRUGS

- Paracetamol
- Phenytoin
- Chlorpromazine
- Rifampicin
- Erythromycin
- Androgens
- Alcohol
- Methotrexate
- Isoniazid
- Halothane
- Enflurane

Hepatic cell injury

Cholestatic jaundice

Cirrhosis

Hepatitis

PATHOLOGICAL FACTORS

Renal Disease

- o JGFR
- ↓ tubular function
- J Plasma albumin
 - Digoxin, Lithium, Gentamycin, Penicillin

Malnutrition

- ↓ plasma protein binding of drugs
- ↓ amount of microsomal enzymes
- † Increase portion of free, unbound drug
 - Warfarin

NEPHROTOXIC DRUGS

- NSAIDs (interstitial nephropathy)
- ACE inhibitors

Nephrotic syndrome

- Penicillamine
- Sulfonamides (glomerulonephritis)
- Aminoglycoside (tubular necrosis)
- Kanamycin
- Capreomycin

8. GENETIC FACTORS

- Acetylation
 - Acetyl transferase: Isoniazid, sulphonamides
- Succinylcholine apnea
 - Pseudocholinesterase deficiency
 - Due to paralysis of respiratory muscles
- G6PD-deficiency
 - Hemolytic anemia upon exposure to some oxidizing drugs. E.g. Primaguine

9. SPECIES/ RACE

- Response to drugs may vary with species and race e.g.
- Rabbits are resistant to atropine
- Blacks need higher doses of atropine to produce mydriasis

10. ROUTE OF ADMINISTRATION

- Route determines the speed and intensity of drug response – Parenteral for speedy action
- A drug may have different actions via different routes – Magnesium sulfate
- MgSO₄: Oral: as purgative; IV: as anticonvulsant (eclampsia of pregnancy)
- N-acetylcysteine: Oral/ IV: as antidote in PCM poisoning; Inhaled: act as a mucolytic

11. TIME

- Chronopharmacology
 - Study of correlation of drug effects to circadian rhythm
- it has been observed that endogenous body clock (circadian cycle) may affect the response of the drug. e.g.
- Statins given at bed time

12. ENVIRONMENTAL FACTORS

- Drug metabolism may get induced –
 exposure to insecticides, carcinogens,
 tobacco smoke and charcoal broiled meat
 etc.
 - Microsomal Enzyme Inducers
 - Smokers metabolize drugs more rapidly than non smoker

13. FOOD

- Food depress the rate and extent of drug absorption.
- Medicines are usually taken after a meal to reduce the risk of gastric irritation, nausea and vomiting.
- Drug may be given on empty stomach -to prevent mixing with food stuffs-e.g. anthelmintics -to get an immediate action -to prevent drug inactivation in the stomach. e.g. penicillin v
- Tetracyclines form insoluble chelates with Ca, Al etc.
 reduce their absorption.

14. PSYCHOLOGICAL FACTORS

- Affected by patients' beliefs, attitudes, expectations
- Placebo (I shall please)
 - Inert substance which is given in the garb of medicine
 - Psychological adv, no pharmacological role
 - Depends on doc-patient relationship

PSYCHOLOGICAL FACTORS

Placebo

- Inert dosage form with no specific biological activity but only resembles the actual preparation in appearance
- Used as a control in clinical trials (dummy) & to treat a patient who doesn't require an active drug
- Induce physiological responses (endorphins in CNS→ analgesia)
- Does not produce drug-drug interactions
- Never works in unconscious patient
- Distilled water, lactose, dextrose, vitamins, minerals

TOLERANCE

- Reduction in the response due to continued use or repeated administration of drug
- Higher doses of drug are needed to produce a given response
- Drugs producing tolerance: Benzodiazepines, Alcohol,
 Caffeine, Barbiturates, Opioids, Nitroglycerine
- Types
 - Natural: blacks intolerant to mydriatics
 - Acquired: chlorpromazine to sedation

MECHANISM OF TOLERANCE

- Changes in pharmacokinetics
- Down regulation of receptors
 - E.g. morphine

Cross tolerance: Development of tolerance to pharmacologically related drugs e.g. chronic alcoholics show tolerance to barbiturates & general anesthetics

TACHYPHYLAXIS

- Acute tolerance: tachy: fast; phylaxis: protection
- Rapid reduction in responsiveness due to repeated administration of drug at frequent intervals
- Mechanism
 - Depletion of neurotransmitters
 - Slow dissociation of drugs from receptors
- Cannot be overcome by increasing the dose
- Nitroglycerin (Monday disease), Amphetamine,
 Ephedrine, tyramine, nicotine

TERATOGENICITY

- Congenital malformations occurring in the fetus due to exposure to drugs during pregnancy
- o Categories A, B, C, D, X

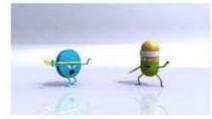
OTHER DRUGS

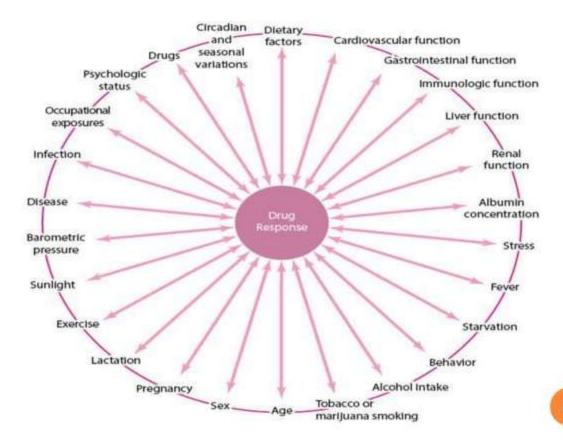
- Drugs can modify the response to each other by pharmacokinetic or pharmaco-dynamic interaction between them.
- Many ways in which drugs can interact are:
- Synergism
- Antagonism

SYNERGISM:

- When the action of one drug is facilitated or increased by the other, they are said to be synergistic.
- In a synergistic pair, both the drugs can have action in the same direction or given alone one may be inactive but still enhance the action of the other when given together.
- Effects of drug A + Effects of drug B is < Effect of Drug A+B

ANTAGONISM:


 When one drug decreases or abolishes the action of another, they are said to be


Antagonistic:

- Effect of drugs A + B < Effect of Drug A + Effect of drug B
- Usually in an antagonistic pair one drug is inactive as such but decreases the effect of the other.

DRUG – DRUG INTERACTION

- When two or more drugs are given or administered simultaneously response of one drug is altered to another drug.
- This may be
- Desired or beneficial
 - e.g. Multi drug treatment of T.B, Naloxone to treat Morphine overdose
- Undesired or hamful

