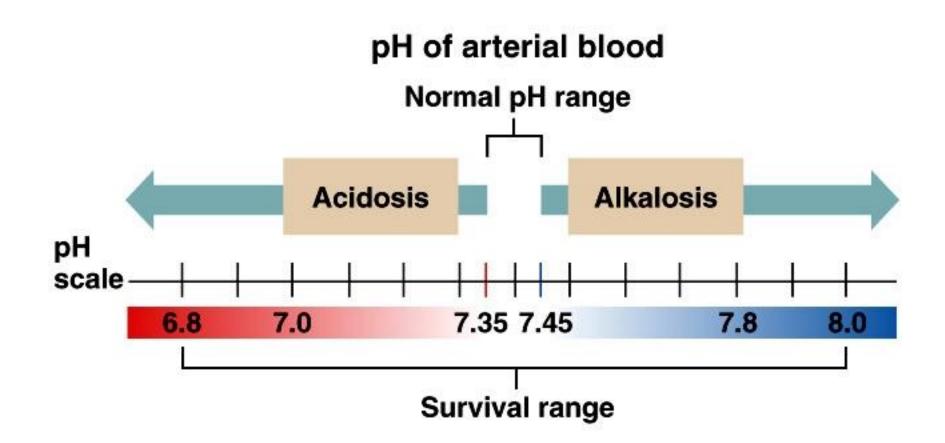
Regulation of blood pH, role of buffers, concept of acidosis and alkalosis

Dr. Sajib Sarkar Senior Resident

Objectives

- What is pH?- Definition
- Why is it necessary to maintain blood pH in narrow range?- Function
- How is it regulated?- Physiology
- What happens if regulation fails?-Diseases


Introduction

- pH = log [H+]
- H⁺ is really a proton
- Range is from 0 14
- Acids are H⁺ donors.
- Bases are H⁺ acceptors, or give up OH⁻ in solution.
- Strong & weak.

HCI
$$\longrightarrow$$
 H⁺ + CI⁻
 $H_2CO_3 \longrightarrow$ H⁺ + HCO₃⁻

The Body and pH

- Homeostasis of pH is tightly controlled
- Extracellular fluid = 7.4
- Blood = 7.35 7.45
- < 6.8 or > 8.0 death occurs
- Acidosis (acidemia) below 7.35
- Alkalosis (alkalemia) above 7.45

Why is it necessary to maintain blood pH in narrow range

- Most enzymes function only with narrow pH ranges
- Acid-base balance can also affect electrolytes (Na⁺, K⁺, Cl⁻)
- Can also affect hormones

Why Blood pH Tends to Change?

- Foods
- Acids produced by metabolism
- Cellular metabolism produces CO_2 . $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
- Pathological conditions- increase organic acid production

How is it regulated? 1. Buffers 2. Lung 3. Kidney

1. Buffer systems

General considerations:

- Resist change of pH
- Usually 1 weak acid and salt of its conjugate base
- eg. Acetate buffer

CH₃COOH ≒ CH₃COO⁻ + H⁺

 $CH_3COO^-Na^+(s) \rightarrow CH_3COO^- + Na^+$

- pK of a buffer
- Buffer capacity

1a. Bicarbonate buffer

- Sodium Bicarbonate (NaHCO₃) and carbonic acid (H₂CO₃)
- Maintain a 20:1 ratio : HCO_3^- : H_2CO_3 $H_2CO_3 \leftrightarrow H^+ + HCO_3^-$

 $\begin{array}{l} \mathsf{HCI}+\mathsf{NaHCO}_3 \ \leftrightarrow \mathsf{H}_2\mathsf{CO}_3 \ + \ \mathsf{NaCI} \\ \mathsf{NaOH}+\mathsf{H}_2\mathsf{CO}_3 \ \leftrightarrow \ \mathsf{NaHCO}_3 \ + \ \mathsf{H}_2\mathsf{O} \end{array}$

1b. Phosphate buffer

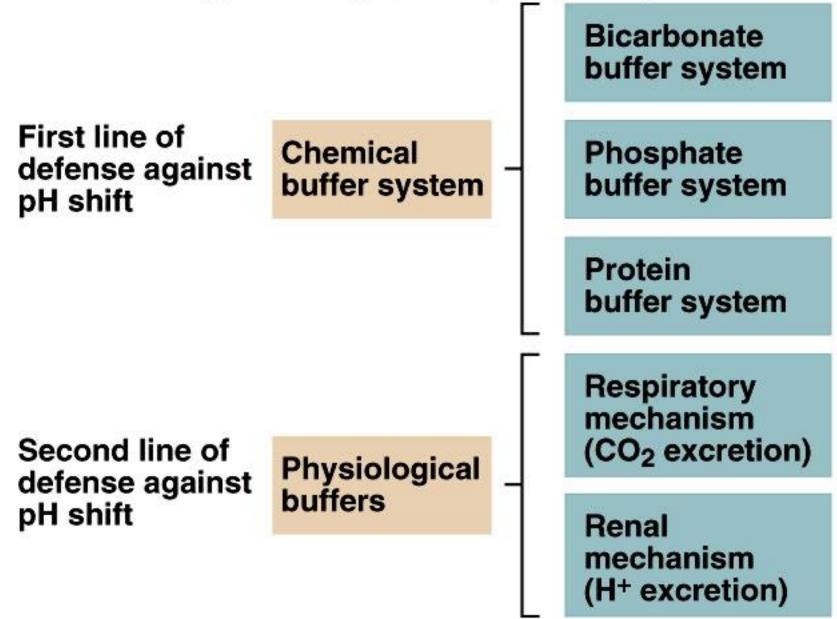
- Major intracellular buffer
- $H^+ + HPO_4^{2-} \leftrightarrow H_2PO4^{-1}$
- $OH^- + H_2PO_4^- \leftrightarrow H_2O + H_2PO_4^{2-}$

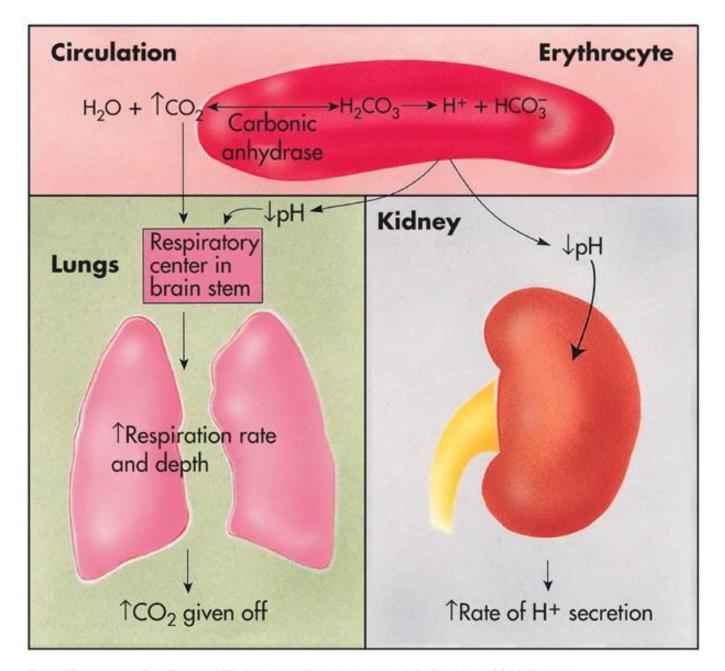
1c. Protein Buffers

- Includes hemoglobin, work in blood and ISF
- Carboxyl group gives up H⁺
- Amino Group accepts H⁺
- Side chains buffer H⁺

2. Respiratory mechanisms

- Exhalation of carbon dioxide
- Powerful, but only works with volatile acids
- Doesn't affect fixed acids like lactic acid
- $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
- Body pH can be adjusted by changing rate and depth of breathing


3. Role of Kidney


- Conserves bicarb ions
- Can eliminate large amounts of acid

- Can also excrete base
- Most effective regulator of pH

Rates of correction

- Buffers function almost instantaneously
- Respiratory mechanisms take minutes to hours
- Renal mechanisms may take several hours to days

From Thibodeau GA, Patton KT: Anatomy & physiology, ed 5, St Louis, 2003, Mosby.

What should be the pH of Blood? $pH = pK_a + log \frac{[A^-]}{[HA]}$

 $CO_2 + H_2O \xrightarrow{l} H_2CO_3 \xrightarrow{l} HCO_3^- + H^+$

CARBON DIOXIDE + WATER

CARBONIC ACID

BICARBONATE HYDROGEN ION

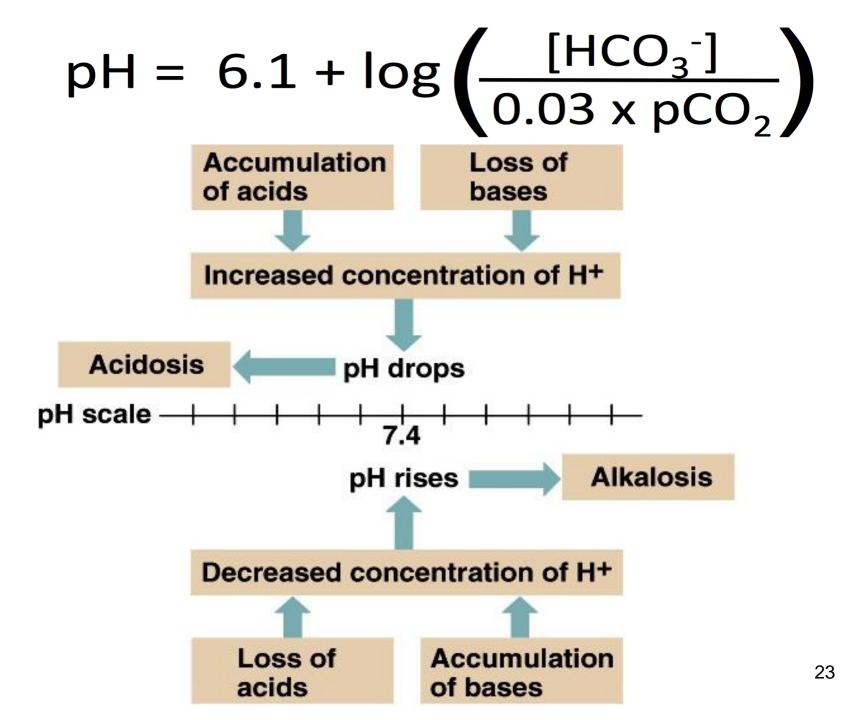
pH = 6.1 + log $\left(\frac{[HCO_3^{-}]}{0.03 \times pCO_2}\right)$

Acid-Base Imbalances

- pH< 7.35 acidosis
- pH > 7.45 alkalosis
- The body response to acid-base imbalance is called compensation
- May be complete if brought back within normal limits
- **Partial compensation** if range is still outside norms.

Compensation

 If underlying problem is metabolic, hyperventilation or hypoventilation can help : respiratory compensation.


 If problem is respiratory, renal mechanisms can bring about metabolic compensation.

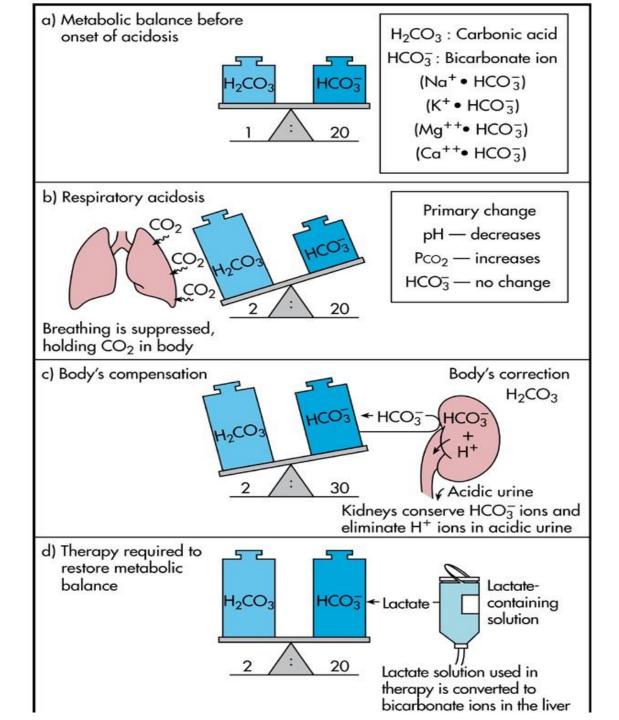
Acidosis

- Principal effect of acidosis is depression of the CNS through ↓ in synaptic transmission.
- Generalized weakness
- Deranged CNS function the greatest threat
- Severe acidosis causes
 - -Disorientation
 - -Coma
 - -eath

Alkalosis

- Alkalosis causes over excitability of the central and peripheral nervous systems.
- Numbness
- Lightheadedness
- It can cause :
 - Nervousness
 - muscle spasms or tetany
 - Convulsions
 - Loss of consciousness
 - Death

Respiratory Acidosis


- Carbonic acid excess caused by blood levels of CO₂ above 45 mm Hg.
- Hypercapnia high levels of CO₂ in blood
- Chronic conditions:
 - Depression of respiratory center in brain that controls breathing rate – drugs or head trauma
 - Paralysis of respiratory or chest muscles
 - Emphysema

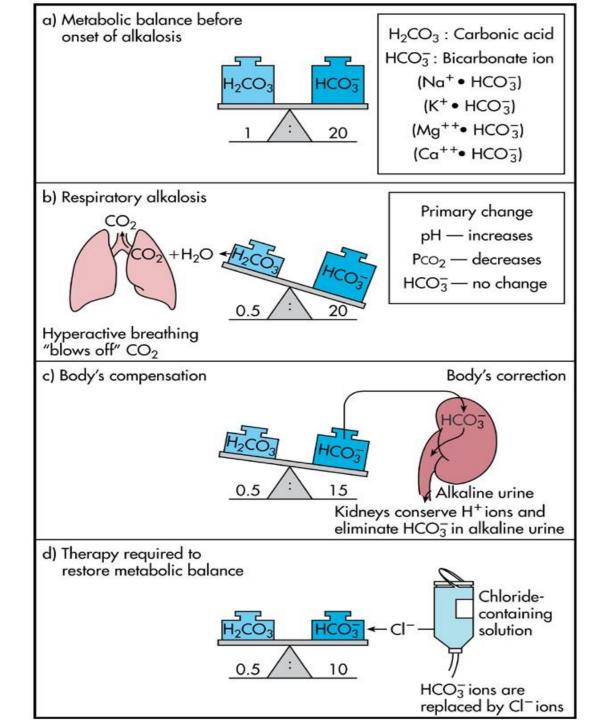
Respiratory Acidosis

- Acute conditons:
 - Adult Respiratory Distress Syndrome
 - Pulmonary edema
 - Pneumothorax

Compensation for Respiratory Acidosis

 Kidneys eliminate hydrogen ion and retain bicarbonate ion

Respiratory Alkalosis

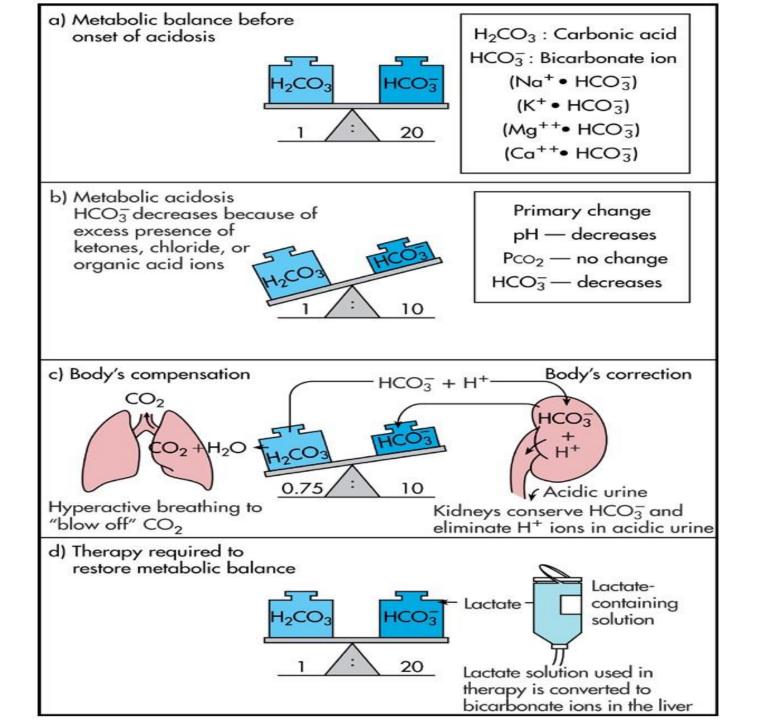

- Carbonic acid deficit
- pCO₂ less than 35 mm Hg (hypocapnea)
- Most common acid-base imbalance
- Primary cause is hyperventilation

Respiratory Alkalosis

- Conditions that stimulate respiratory center:
 - Oxygen deficiency at high altitudes
 - Pulmonary disease and Congestive heart failure – caused by hypoxia
 - Acute anxiety
 - Fever, anemia
 - Early salicylate intoxication

Compensation of Respiratory Alkalosis

- Kidneys conserve hydrogen ion
- Excrete bicarbonate ion

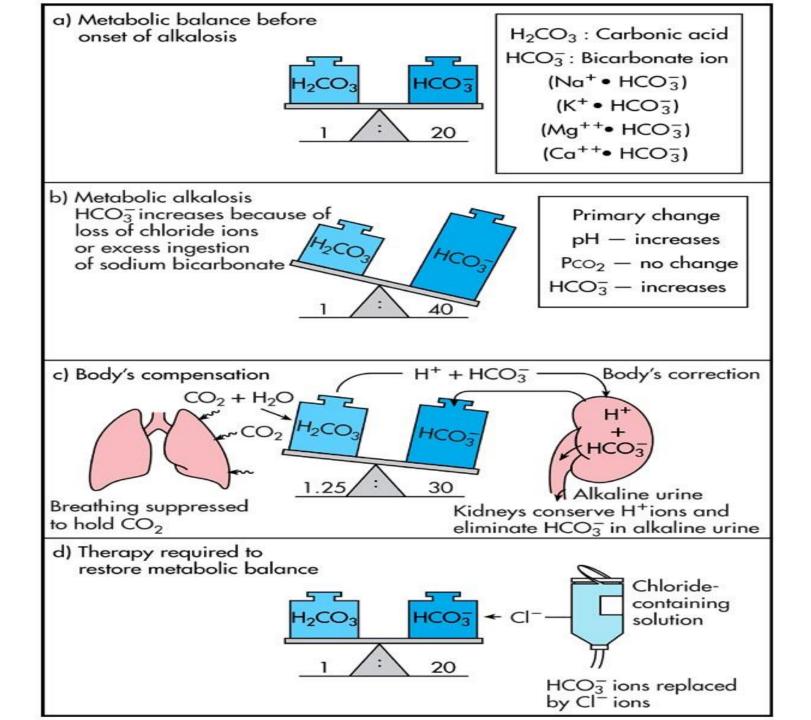


Metabolic Acidosis

- Bicarbonate deficit blood concentrations of bicarb drop below 22mEq/L
- Causes:
 - Loss of bicarbonate through diarrhea or renal dysfunction
 - Accumulation of acids (lactic acid or ketones)
 - Failure of kidneys to excrete H+

Compensation for Metabolic Acidosis

- Increased ventilation
- Renal excretion of hydrogen ions if possible
- K⁺ exchanges with excess H⁺ in ECF
- (H⁺ into cells, K⁺ out of cells)



Metabolic Alkalosis

- Bicarbonate excess concentration in blood is greater than 26 mEq/L
- Causes:
 - Excess vomiting = loss of stomach acid
 - Excessive use of alkaline drugs
 - Certain diuretics
 - Endocrine disorders
 - Heavy ingestion of antacids
 - Severe dehydration

Compensation for Metabolic Alkalosis

- Alkalosis most commonly occurs with renal dysfunction, so can't count on kidneys
- Respiratory compensation difficult hypoventilation limited by hypoxia

Diagnosis of Acid-Base Imbalances

- What is the primary disorder?
- Compensatory mechanism?
- Complete or incomplete?
- Investigation- ABG
- Essential parameters in an ABG-

TABLE 4-1	Normal Blood Gas Values			
Blood Gas Value*	Arterial			
pH	7.35 to 7.45			
Pco ₂	35 to 45 mm Hg			
HCO ₃	22 to 28 mEq/L			
Po ₂	80 to 100 mm Hg			

Diagnosis of Acid-Base Imbalances

- Note whether the pH is low (acidosis) or high (alkalosis) or normal (normal/ compensated).
- 2. Identify individual changes in pCO_2 or HCO_3^{-1}
- 3. Change correspond to the pH finding would be primary pathology.
- 4. Change in other one refers to compensation.

Example

 A patient is in intensive care because he suffered a severe myocardial infarction 3 days ago. The lab reports the following values from an arterial blood sample:

$$-HCO_3^{-} = 20 mEq / L$$

 $-PCO_2 = 32 \text{ mm Hg}$

Metabolic Acidosis with compensatory Respiratory Alkalosis

ABG no.	рН	PCO ₂	HCO ₃ -	Primary	Compensat ory
1	7.28	36	20	Met Acidosis	Nil
2	7.3	32	20	Met Acidosis	Resp Alkalosis (Incomplete)
3	7.36	30	20	Met Acidosis	Resp Alkalosis (Complete)

Diagnose

- pH =7.5
- HCO_3^- = 31 mEq / L (22 26)
- $PCO_2 = 49 \text{ mm Hg} (35 45)$

Diagnose

pH =7.37

- HCO_3^- = 36 mEq / L (22 26)
- $PCO_2 = 62 \text{ mm Hg} (35 45)$
- $PO_2 = 65 \text{ mm Hg} (80-100)$

THANK YOU