COLORIMETRY

M.Prasad Naidu MSc Medical Biochemistry, Ph.D.

colorimetry

- It is the most common analytical technique used in biochemical estimation in clinical laboratory.
- It involves the quantitative estimation of color.
- A substance to be estimated colorimetrically, must be colored or it should be capable of forming chromogens (colored complexes) through the addition of reagents.

- Colored substance absorb light in relation to their color intensity.
- The color intensity will be proportional to the conc. Of colored substance.
- The instruments used in this method are colorimeter or photometer or absorptiometers.

- certain wavelength of light when a monochromatic light is passed through them.
- The amount of light absorbed or transmitted by a colored solution is in accordance with two laws:
- Beer's law
- Lambert's law

Beer's law:

- When a monochromatic light passes through a colored solution, amount of light transmitted decreases exponentially with increase in concentration of colored substance.
- i.e. the amount of light absorbed by a colored solution is directly proportion to the conc. Of substance in the colored solution.

Lambert's law:

- The amount of light transmitted decreases exponentially with increase in pathlength (diameter) of the cuvette or thickness of colored solution through which light passes.
- i.e. the amount of light absorbed by a colored solution depends on pathlength of cuvette or thickness or dept of the colored solution.

Combined <u>beer's- lambert's law</u> is thus expressed as amount of light transmitted through a colored solution decreases exponentially with increases in conc. Of colored solution & increase in conc. of colored solution & increase in the pathlength of cuvette or thickness of the colored solution

Fig. 27.1: Parts of the colorimeter

Light source: tungsten filament lamp

Slit: it is adjustable which allows only a beam of light to pass through, it prevents unwanted or stray light

Condensing lenses: light after passing through slit falls on condenser lense which gives a parllel beam of light.

Filter:

- made of colored glass. Filters are used for selecting light of narrow wavelength.
- filters will absorb light of unwanted wavelength and allow only monochromatic light to pass through.
- <u>For ex:</u> a green filter absorbs all color, except green light which is allowed to pass through.light transmitted through a grenn filter has a wavelength from 500-560 nm.
- Filter used is always complimentary in color to the color of solution.

Table 27.1: Filters used in a colorimeter

Color of Solution	Filter	Wavelength Range (nm)	Peak
Yellow/green	Violet	390-490	430
Yellow	Blue	460-540	480
Orange/Purple	Green	500-590	540
Blue/Green	Orange	580-650	600
Blue	Red	650-700	670

Cuvette(sample holder): the monochromatic light from the filter passes through the colored solution placed in a cuvette.

- it is made up of special glass/plastic/quartz material.
- it may be square/rectangular/round shape with fixed diameter (usually 1 cm)& having uniform surface.the colored solution in the cuvette absorbs part of light & remaining is allowed to fall on detector.
- For ex: a solution of red color transmits red light & absorbs the complimentary color green.

Detector (photocell):

- Detector are photosensitive elements which converts light energy into electrical energy.
- The electrical signal generated is directly proportional to intensity of light falling on the detector.

<u>Output</u>: the electrical signal generated in photocell is measured by galvanometer, which displays percent transmission & optical density.

Fig. 27.2: Galvanometer

Use of Test (T), Standard (S) and Blank (B)

In colorimetric estimations, it is necessary to prepare a blank (B), a standard (S) and test (T).

Use of test (T), standard (S) and blank (B)

In colorimetric estimation, it is necessary to prepare a blank (B), a standard (S) & test (T).

<u>Test</u>: this solution is prepared by treating a specific volume of specimen (blood, urine, CSF...etc) with reagents.

- Standard: prepared by treating a solution of the pure substance of unknown conc. With reagents.
- Primary standard: the same substance is used as standard one which is to be estimated.

For ex: pure glucose is taken as standard in estimation of blood glucose.

Secondary standard :

Here the substance taken as standard is different from the substance to be estimated.

This substance taken as standard should match the color of final product.

For ex: methyl red is taken as standardin estimation of serum bilirubin.

- Blank: prepared for rule out color produced by reagents alone.
- Two types of blank :
- A) Distilled water as blank
- reagent blank (reagent used in the estimation is taken as blank)

Calculation:

 conc. Of substance in mg /100mg or gm/100ml of sample.

OD of test- OD of blank conc. of standard 100
OD of standard — vol. of test sample
OD of blank

Application of colorimetric assay:

Used in determination of amount of many substances in blood, urine, saliva, CSF & other specimens.

Ex for common colorimetric assay are: determination of blood glucose, blood urea, serum creatinine, serum proteins, serum cholesterol, serum inorganic phosphate, urine creatinine & glucose in CSF, etc.

THANK YOU