PATHOPHYSIOLOGY OF BURNS

I.DAVID THANKA EDISON 2 nd Yr MS PG

DEFINITION

Burns are wounds produced by various kinds of agents that cause cutaneous injury and destruction of underlying tissue.

TYPES OF BURNS

- Thermal injury
 - Scald—spillage of hot liquids
 - Flame burns
 - Flash burns due to exposure of natural gas, alcohol, combustible liquids
 - Contact burns—contact with hot metals/objects/materials
- Electrical injury
- Chemical burns—acid/alkali
- Cold injury—frost bite
- Ionising radiation
- Sun burns

Classification of Burns

1. Depending on thickness of skin involved

a. First degree:

- Epidermis is red and painful,
- No blisters,
- Heals rapidly in 5-7 days
- By epithelialization without scarring.

b. Second degree:

- Mottled, red, painful, with blisters,
- Heals in 14-21 days.
- Superficial burn heals, causing pigmentation.
- Deep burn heals, causing scarring, and pigmentation.

Third degree:

- Charred, painless and insensitive,
- Thrombosis of superficial vessels.
- It requires grafting.

Eschar Charred

Charred, denatured, insensitive, contracted full thickness burn.

 These wound must heal by reepithelialisation from wound edge.

d. Fourth degree:

Involves the underlying tissues—muscles, bones.

II. Depending on thickness of skin involved

a. Partial thickness burns:

It is either first or second degree burn which is red and painful, often with blisters.

b. Full thickness burns:

It is third degree burns which is charred, insensitive, deep involving all layers of the skin.

Depending on the Percentage of Burns

Mild (Minor):

- Partial thickness burns < 15% in adult or <10% in children.
- Full thickness burns less than 2%.
- Can be treated on outpatient basis.

Moderate:

- Second degree of 15-25% burns (10-20% in children).
- Third degree between 2-10% burns.
- Burns which are not involving eyes, ears, face, hand, feet, perineum.

Major (severe):

- Second degree burns more than 25% in adults, in children more than 20%.
- All third degree burns of 10% or more.
- Burns involving eyes, ears, feet, hands, perineum.
- All inhalation and electrical burns.
- Burns with fractures or major mechanical trauma.

Jackson's thermal wound theory

- Zone of coagulation
 Centre area of wound ,where all tissuses are damaged
- Zone of stasis
 Surrounds the coagulation area some tissues are damaged
- Zone of hyperaemia
 Unburned area surrounds the stasis but it is red due to inflammation

ASSESMENT OF BURNS

Wallace's rules of nine

It is used for early assesment

The Lund and Browder chart

 Better method for assessing the burns wound.

 Here each part of the body is individually assessed

Rule of palm

 Patient's entire hand area is 1%.

 Clean piece of paper is cut to the size of hand and through that percentage of burns is assessed.

CLINICAL FEATURES

- History of burn.
- Pain, burning, anxious status, tachycardia, tachypnoea.
- In severe degrees features of shock.

Tolerable temperature to human skin is 40°C for brief period.

PATHOPHYSIOLOGY

Pathophysiology

Heat causes coagulation necrosis of skin and subcutaneous tissue

1

Release of vasoactive peptides

1

Altered capillary permeability

Loss of fluid → **Severe hypovolaemia**

Decreased cardiac → Decreased myocardial function output Decreased renal blood → Oliguria flow (Renal failure) Altered pulmonary resistance causing pulmonary edema Infection

Systemic inflammatory response syndrome (SIRS)

Multiorgan dysfunction syndrome (MODS).

Massive edema

Injury to basement membrane

Altered pressure gradient

Edema

Renal

- Diminished blood flow and cardiac output leads to decreased renal blood flow and GFR
- Toxins released from the wound along with sepsis causes acute tubular necrosis.
- Myoglobin released from muscles (in case of electric injury or often from eschar) is most injurious to kidneys.
- Earlier resuscitation decreases renal failure and improves assosciated mortality

LUNGS

- Altered ventilation-perfusion ratio.
- Pulmonary oedema due to burn injury, fluid overload,
- ARDS.
- Aspiration.
- Septicaemia.

GIT

burns→mucosal atrophy→
decreased absorption & increased
intestinal permeability→
increased bacterial translocation→
septicemia

GIT

- Acute gastric dilatation which occurs in 2-4 days.
- Paralytic ileus.
- Curling's ulcer.
- Acute acalculous cholecystitis, acute pancreatitis
- Abdominal Compartment syndrome

IMMUNE SYSTEM

 Decreased function of T and B lymphocytes and macrophages > increased infection rate

Metabolic

- Hypermetabolic rate (BMR).
- Negative nitrogen balance.
- Electrolyte imbalance.
- Deficiencies of vitamins and essential elements.
- Metabolic acidosis due to hypoxia and lactic acid.

SUMMARY OF PATHOPHYSIOLOGY

Infections

- Streptococci (Beta haemolytic—most common)
- Pseudomonas
- Staphylococci
- Other gram-negative organisms
- Candida albicans

Causes of death

- Hypovolaemia (refractory and uncontrolled) and shock
- Renal failure
- Pulmonary oedema and ARDS
- Septicaemia
- Multiorgan failure
- Acute airway block in head and neck burns

THANK YOU

