

Tuberculosis

BY:

Jehad Obaid & Yaser Barhoum

Microbiology department

Central lab - MOH Gaza Strip

History of Tuberculosis

- Tuberculosis has been found in the remains of ancient skeleton and Egyptian mummies 5000 years B.C.
- in the early 19th century it was known as "White plague".

- in the early 19th century it was known as "White plague".
- Eventually the name Tuberculosis was acquired with discovery of tubercle bacillus by Robert Koch in 1882

What are Mycobacteria?

Scientific classification:

- •Kingdom: Bacteria
- Phylum : Actinobacteria
- Order : Actinomycetales
- •Suborder: Corynebacterineae
- •Family : Mycobacteriaceae
- •Genus : Mycobacterium
- Species : M. tuberculosis

What are Mycobacteria?

- Facultative intracellular pathogens: usually infecting mononuclear phagocytes (e.g. macrophages).
- Rod shape Non-motile
- Non spore forming
- Obligate aerobic: growing most successfully in tissues with a high oxygen content, such as the lungs.

What are Mycobacteria?

- Known as "Acid-fast bacilli":
 - Because of their lipid-rich cell walls (mycolic acid and wax D), which are relatively impermeable to various basic dyes.
 - Thus they resist decolourization with acidified organic solvents.
- (Other bacteria which also contain mycolic acids, such as <u>Nocardia</u>, can also exhibit this feature.)

Mycobacteria Tuberculosis

- Mycobacterium Tuberculosis is the commonest to cause T.B. in man.
- Worldwide, M. tuberculosis causes more deaths than any other single microbial agent.
- Tuberculosis highly Communicable Disease.
- Someone in the world is newly infected with TB bacilli every second.
- Approximately one-third of the world's population is infected with this organism.
- Each year, it is estimated that 1.7 million people die of tuberculosis and that 9 million new cases occur.

Transmission (Portal of entry)

- Inhalation of droplet nuclei.
- Ingestion of contaminated milk.
- Infection after trauma.
- Congenital primary T.B.

Spread of Tuberculosis

Symptoms and Sings of Tuberculosis

Pathogenesis of Tuberculosis

Tubercle bacilli that reach the alveoli of the lung are ingested by macrophages

- The organisms multiply and cause a chemotactic response that recruits other macrophages and T cells to the area.
- Macrophages release enzymes and cytokines to start an inflammatory response to wall off the organism (tubercle formation), but the inflammatory response also causes lung damage.

- After a few weeks many of the macrophages die, releasing tubercle bacilli and forming a caseous center in the tubercle.
- In healthy individuals, the disease is usually arrested at this time and the lesions may become calcified (Ghon complexes).
- Tubercle bacilli may remain dormant in the lesion and serve as a basis for later reactivation of the disease.

- When the defenses fail, a mature tubercle may form whereby the caseous center will enlarge and liquify to form a tuberculous cavity where the bacilli multiply outside the macrophages.
- The tubercle eventually ruptures, releasing tubercle bacilli that can disseminate throughout the lungs and then to the circulatory and lymphatic systems.

Diagnosis

- Tuberculosis is diagnosed definitively by identifying the causative organism in a clinical sample.
- When this is not possible, a probable diagnosis may be made using imaging (X-rays or scans) or a tuberculin skin test.
- Currently, infection is diagnosed in a non-immunized person by recent techniques as PCR.

Chest X-Ray of Patient with Active Pulmonary Tuberculosis

Tuberculin Skin Testing

- Intradermal test used to detect the state of hypersensitivity to tubercle bacilli.
- Mantoux tuberculin skin test :
- is the <u>standard method</u> of determining whether a person is infected with Mycobacterium tuberculosis.
- Purified protein derivative (PPD) or Old Tuberculin (OT) injected intracutaneously into skin of the forearm.
- After 72 hours, the site of injection examined (nodules).
- If nodules diameter greater than 10 mm → positive.
- Interpretation:
- Positive test indicates previous exposure and carriage of T.B.
- Negative tuberculin test excludes infection in suspected persons.
- Tuberculin positive persons may develop reactivation type of T.B.
- Tuberculin negative persons are at risk of gaining new infection.
- Positive test in Children below 5 years of age with no exposure history must be regarded suspicious.

Types of specimens:

- Sputum.
- Urine
- Pleural fluid
- Peritoneal fluid
- CSF

Laboratory Diagnosis

1. Microscopic examination

- Need to contain large number of bacilli (5000-10000 AFB/ml).
- Direct smear stained by Ziehl-Neelsen (hot stain) or Kinyoun's-cold stain
- Direct smear stained by fluorescence dyes.
- Under Microscope: slender, straight or curved rod Size: 0.4 μm wide and 3–4 μm long Arranged singly, in pairs or clusters

Acid fast Bacilli seen as in Acid Fast Bacilli seen in a Sputum Florescent Microscope

Acid Fast Stain

Sputum smear microscope the only cost-effective tool for diagnosing patients with infectious tuberculosis. and to monitor their progress in treatment.

Sputum smear microscopy is a simple inexpensive, appropriate technology method which is relatively easy to perform and to read

It yields timely results with a very high sensitivity of detection of tubercle bacilli

Sputum smear microscope also used after cultuering sputum to identify Mycobacterium tuberculosis

Principle of ZN Stain - 1

M tuberculosis

complex waxy cell wall

Proteus sp e.g.

carbol fuchsin

HEAT

Principle of ZN Stain - 2

decolourise

Principle of ZN Stain - 3

2. Culture

Culture characters

- Obligate aerobes
- Growth generally slow
- The generation time of TB is approximately 12–18 hours (20-30 minutes for Escherichia coli)
- Optimum Temp. 37°C
- Incubated for 6-8 weeks

They can grow on media containing complex substances include:

- Dorset egg and egg saline media: contain egg yolk.
- Selective media:
 - Lowenstein Jensen media: contain malachite green dye to inhibit the unwanted normal flora present in sputum samples.
 - Lowenstein Jensen Glycerol media: Glycerol enhance the growth of Human Tubercle bacilli (TB).
 - Lowenstein Jensen Pyruvate media: used for isolation of M.bovis

On L J Medium

- M.tuberculosis appear dry, rough raised irregular colonies
- Appear wrinkled
- They appear <u>creamy</u> <u>white</u>
- Become <u>yellowish</u>

Eight Week Growth of Mycobacterium tuberculosis on Lowenstein-Jensen Agar

Mycobacterium Tuberculosis on Lewenstien Jensen medium

3. Molecular diagnosis

Genome of Mycobacterium tuberculosis

Polymerase Chain Reaction (PCR)

T.B. Situation in Palestine

T.B. Situation in Palestine

Incidence Rate of Tuberculosis per 100,000 Pop., Palestine 2000- 2016

Annual incidence rate per 100.000 of TB in GS, years 2006-2016

Geographical distribution of TB reported cases in GS, year 2016

Percentage of reported cases of TB by type of disease in GS, 2016

