Biochemical identification of bacteria

Dr. Paul Ingram
Infectious Diseases Physician (RPH) &
Microbiologist (PathWest Laboratories)

Outline

- Phenotypic vs genotypic tests
- Pros and cons of biochemical tests
- Basis of biochemical tests
- Examples of biochemical test
- Diagnostic algorithms
- The future of biochemical identification tests

Methods of bacterial ID

- Phenotypic
 - Detects the physical properties of bacteria
 - Influenced by gene expression
 - Includes biochemical tests

- Genotypic
 - Detects the genetic code of bacteria (DNA)
 - Not influenced by gene expression

Eg coagulase for staphylococcal ID

Phenotypic test

Genotypic test

Biochemical ID: Pros and cons

Pros

- Cheap
- Experience with use++
- Does not require expertise
- Potentially fast TAT (range: seconds to overnight)

Cons

- Biosafety risk (live organisms)
- Less accurate, less discriminatory
- Phenotype may be unstable
 - Eg induceable (ie influenced by gene expression)
- Not possible if organism is slow growing or fastidious
- Subjective interpretation (less reproducable)

Type of phenotypic ID

- Appearance
 - Macroscopic
 - Microscopic (eg gram stain, rod vs coccus)
- Growth requirement/rate
 - Media
 - Atmospheric gases
 - Temperature
- Smell
- Motility
- Hemolysis on blood agar
- Biochemical tests

(See lecture on "Culture characteristics for bacterial identification")

Basis of biochemical tests

- Important features
 - Standardisation of method
 - standardised amount of bacteria used for test (=inoculum)
 - +ve and –ve controls

pH indictors

Colour changes occur at different pHs for different indicators

•	pH Indicator	pH range	Change from acid to alkaline
	Methyl red Andrades	4-6 5-8	red to yellow pink to yellow
	Bromescol blue Phenol red	5-6 6-8	yellow to purple yellow to red

Standardisation of the inoculum

- Examples of solid phase:
 - Loop size (eg 1microL, 10microL)

- · Examples of liquid phase
 - Turbidity of fluid
 - The ability of particles in suspension to refract and deflect light rays
 - Optical density
 - Nephelometry

Positive and Negative controls

- Positive control: bacteria with known +ve test result
- Negative control: bacteria with known -ve test result
- If either or both of the controls fail, then the test is not valid

Types of biochemical ID methods

- Manual vs automated
 - Automated systems have the advantage of automated reading which improves speed, consistency and removes subjective error.
- In house vs commercial

Examples of common biochemical tests used for ID of gram negative bacteria

- Urease
- Indole
- Oxidase
- Glucose fermentation
- Lactose fermentation
- Nitrate

Urease

 Detects hydrolysis of urea to ammonia by urease enzyme

 Ammonia causes an increase in pH which is detected by the pH indicator (orange -> pink)

- Urease +ve bacteria:
 - Proteus
 - Klebsiella

VSURE 42.4 Cheese test. Tube on the left is positive Proteod: tube on the right is negative. It has not been proteomic follow interests Positionaria Service.

Indole

- Detects indole production from tryptophan, which produces a colour change in combination with dimethylaminobenzaldehyde (clear to red)
- Indole +ve bacteria:
 - E.coli
 - Citrobacter

Oxidase

- Detects cytochrome oxidase enzyme that converts dimethylphenyldiamine to indophenol blue (clear to blue)
- Oxidase +ve bacteria:
 - Pseudomonas
 - Vibrio

Glucose fermentation

- Detects ability of bacteria to ferment glucose to pyruvic acid using the Embden Meyerhof pathway
- Detected by phenol red pH indicator (red/alkaline to yellow/acid)
- · Bacteria that ferment glucose:
 - E.coli
 - Proteus

Lactose fermentation

- Detects ability of bacteria to ferment lactose to glucose then to pyruvic acid using the Embden Meyerhof pathway
- Detected by phenol red pH indicator (red/alkaline to yellow/acid)
- Bacteria that ferment glucose:
 - E.coli
 - Klebsiella

Nitrate

- Detects nitrate reductase enzyme which converts nitrate to nitrite.
- Nitrite then revealed by addition of naphthylamine and sulfinic acid to form diazonium dye (clear to red)
- Nitrate +ve bacteria:
 - E.coli
 - Klebsiella

TSI slope

- Incorporates multiple substrates and pH indicators into 1 tube
- By streaking bacteria onto surface and stabbing it into media, both aerobic and anaerobic conditions are generated

API

- Minituarized biochemical reactions in >20 wells
- Takes 2-24 hrs
- Reaction profile ("biocode") compared to an on-line database of >20000 isolates
- Commercial test

	Ton	Active ingredients	Resettone reary mire
Т	Ch2PG-	2-ottophen (-1D-gala/representate	l-galetooidate
Ξ	ADM	L-arginine	Arginize Diffoliolase
Г	LDC	L-braine	Lenius Decarborofose
4	ODC	L-ondiar	Omitian Denahorylan
3	CIT	Trisodium ottote	Citrate utilization
•	1629	Sodium thiomiphate	H29 peolorium
4	UKE	Uma	Umase
	TDA	L-triptighane	Tryptophose draminar
-	BB	L-tryptophone	Indick production
缸	VP	holion gymner	Activis production(Voges Produces)
	GEL.	Orlatine	Celatinese
缸	OLU	D-glucose	Femontation oxidation (Olumer)
ij.	MAN	D-maneted	Eveninetation insidetion (Masselve)
14	Dico	Suradisi	Francisco residence (boselel)
w	5438.	Drawbind	Fernandation craidation (architel)
100	RIGA	L-dianaser	Franchistim colletion (sharanse)
쓔	MAC	D-morney	Franchiston validation (succharge)
îř	MEL	Denelhow	Femometers residence (perfitore)
篩	AMY	Antegladin	Frementation evolution (Assophalia)
36		L-entition	Francistics exidetes (political)

Automated Biochemical ID systems

Examples:

- Vitek
- Biolog
- Pheonix
- Autoscan Walkaway

Varying capacity for:

- Number of specimens they can handle
- Size/extent of comparative database
- Interfacing with lab data program
- Turn around time
- Capacity for ID to species level

Diagnostic algorithms for bacterial ID

- Primary tests allow genus level ID (enterobacteriacae, "non-glucose fermenters", HACEK, etc)
 - Gram stain
 - Culture morphology
 - Basic biochemical tests
 - · Eg Oxidase, indole, urease tests, etc
- Species level identification requires more complex, second line tests

Example 1 of diagnostic algorithm

	Indole	Methyl red	Voges Proskauer	Citrate	Urease
E.coli	+	+	-	-	
Enterobacter	-	-	+	+	-
Klebsiella pneumoniae	-	-	+	+	+
Salmonella	-	+	-	+	-
Shigella	-	+	-	-	-
Proteus mirabilis	-	+	-	+/-	+

Example 2 of diagnostic algorithm

Changes in biochemical tests for ID: past and future

- Increased automated and minituarisation
- Increasingly replaced by genotypic tests
- Is identification necessary: could we manage with susceptibility testing alone?

Conclusions

- Biochemical tests remain critical to bacterial identification
- Need to understand the principles of the common/primary tests
- Biochemical tests have limitations
- In the future they will increasingly be replaced by genotypic tests