Chemistry of Purines, Pyrimidines and Their Biological Significance

> Sajib Sarkar Senior Resident and PhD Scholar Dept of Biochemistry AIIMS- New Delhi- 29

Objectives

- What are Purines and Pyrimidines?- Chemistry
- What is their role in human body?- Functions
- How do we get them or get rid of them?- Metabolism
- Will their be any pathology if the metabolism is defective?- Diseases
- Can this knowledge be utilized to develop drugs?-Chemo drugs

Q1. What are Purines and Pyrimidines? Chemistry

Nucleic acids are polynucleotides

- Polysaccharides
- Polypeptides
- Polynucleotides

Nucleoside, Nucleotide & Nucleic acid

nucleic acids

Base: Purines, Pyrimidines

 $\begin{array}{c} & & | & 4 \\ & C & 5 \\ & | & C & CH \\ & | & | \\ HC & CH \\ & 2 & N & 6 \end{array}$

Purine

Pyrimidine

Base: Purines, Pyrimidines

Sugar: Ribose, Deoxy ribose

Nucleosides:

Purine Bases

Adenine

Guanine

Hypoxanthine

Xanthine

What is their role in human body? Functions

Role of nucleotides:

- 1. Monomers of nucleic acids DNA & RNA
- 2. Used to activate substrates for biosynthetic reactions
 - UDP-glucose \rightarrow glycogen
 - UDP-glucuronic acid \rightarrow conjugation reactions
 - CDP-diacylglycerol \rightarrow phosphatidyl inositol synthesis
 - CDP-ethanolamine \rightarrow phosphatidyl ethanolamine synthesis
 - S-adenosylmethionine \rightarrow methyl donor
 - GDP-L-fucose \rightarrow Glycoproteins

- 3. ATP is the universal currency of energy. Thermodynamically unfavored reactions are made favorable by coupling of ATP hydrolysis.
- Adenine nucleotides are components of the coenzymes, NAD⁺, NADP⁺, FAD & CoA
- 5. c-AMP, c-GMP are 2nd messengers in signal transduction
- 6. ATP and AMP are allosteric regulators for many enzymes
- 7. ATP dependent phosphorylation regulates the action of enzymes & membrane transporters.

How do we get them or get rid of them? Metabolism

Dietary Nucleic acid

- Broken down to nucleotides
- Further, Base is released
- Purine/pyrimidine transporters in enterocytes
- Enters circulation

Purine/Pyrimidine Nucleotide Synthesis:

- De Novo Pathway
- Salvage Pathway

Sources of purine ring atoms

Phosphoribosyl Pyrophosphate:

Purine Synthesis: De Novo Pathway

Purine Synthesis: De Novo Pathway

Purine Synthesis: Salvage Pathway

Uric Acid is the End Product of Purine Degradation

Disorders Associated with Purine Metabolism

- Gout
- Lesch-Nyhan's syndrome
- Adenosine Deaminase deficiency
- Xanthinuria

Gout is the Manifestation of Hyperuricemia

Hyperuricemia:

- Increased production of uric acid
 - PRPP Synthetase overactivity
 - Von-Gierke's disease
 - Purine rich diet
 - Alcoholism
 - Malignancy

Decreased excretion of uric acid

- Renal failure
- Lactic acidosis

Gout:

Treatment of Gout

- Low purine diet
- Avoid alcohol
- Increased water intake
- Anti-inflammatory drugs
- Allopurinol: Xanthine Oxidase Inhibitor
- Uricosuric drugs

Adenosine deaminase deficiency

- Severe combined immunodeficiency
- B and T lymphocytes are affected
- First gene therapy

Lesch-Nyhan's syndrome

- HGPRTase deficiency
- Purine Salvage Pathway is affected
- Hyperuricemia, self-destructive behavior, mental retardation

Xanthinuria

- Rare
- Xanthine stones
- Hypouricemia
- Xanthine oxidase deficiency

Pyrimidine Bases

Sources of Pyrimidine Ring Atoms

Pyrimidine Synthesis: De Novo Pathway

Pyrimidine Synthesis

Pyrimidine Catabolism

• Water soluble products

Disorders of Pyrimidine Metabolism

• Orotic aciduria

Can this knowledge be utilized to develop drugs?-Chemo drugs

Anticancer Drugs can Target Purine and Pyrimidine Synthesis Pathways

• Methotrexate and 5-Flurouracil

ART-Zidovudine

Adenosine

- Acts via Purinergic receptors
- Cardiac arrythmias

Questions?

Thank you