

INTRODUCTION

 Drugs which block Cholinoreceptors have important clinical effects, some of which are of great clinical value

Muscarinic and Nicotinic

- M1, M2, M3, M4 and M5
- NN and NM

CHOLINERGIC RECEPTORS

- Conventionally Anticholinergic drugs are those which block actions of Ach autonomic effectors and I the CNS exerted through Muscarinic receptors
- Nicotinic (NN) antagonists ganglion blockers

N_M Blockers – neuromuscular blockers

- Atropine is the prototype many synthetic and semi synthetics are available now
- All are competitive antagonists

CLASSIFICATION - ANTICHOLINERGIC DRUGS

- Natural: Atropine and Hyoscine (scopolamine)
- II. Semisynthetic derivatives: Homatropine, Atropine methonitrate, Hyoscine butylbromide, Ipratropium bromide, Tiotropium bromide
- III. Synthetic Compounds:
 - (a) Mydriatics: Cyclopentolate and Tropicamide
 - (b) Antisecretory-antispasmodics:
 - Quartenary ammonium compounds:

Propantheline, Oxyphenonium, Clidinium, Pipenzolate methylbromide, Glycopyrrolate, Isopropamide

Tertiary amines: Dicyclomine, Valethamate, Pirenzepine

- (c) Vasicoselective: Oxybutynin, Flvoxate, Tolterodine
- (d) Antiprkinsonian: Trihexyphenidyl (Benzhexol), Procyclidine, Biperiden

IV. Additionally – TCAs, Phenothiazines and Antihistaminics

ATROPINE AS PROTOTYPE

- Atropine (hyoscyamine) is found in the plant Atropa belladonna, or deadly nightshade
- Also in Datura stramonium, also known as jimsonweed (Jamestown weed) or thorn apple
- Scopolamine (hyoscine) occurs in Hyoscyamus niger

ATROPINE - CHEMISTRY

- Atropine: Ester of tropic acid (aromatic acid) + tropine
- Scopolamine: Ester of tropic acid (aromatic acid)
 + scopine
- Chemically tropine and scopine are closely similar
- Most of the actions of both are similar

The structure of atropine (oxygen at [1] is missing) or scopolamine (oxygen present). In homatropine, the hydroxymethyl at [2] is replaced by a hydroxyl group, and the oxygen at [1] is absent.

ATROPINE - MECHANISM OF ACTION

- Atropine causes reversible (surmountable) blockade of cholinomimetic actions at muscarinic receptors
 - blockade by a small dose of atropine can be overcome by a larger concentration of acetylcholine or equivalent muscarinic agonist
- Atropine is highly selective for muscarinic receptors
- Does not distinguish between the M1, M2, and M3
- Some quaternary amine antimuscarinic agents have significant ganglion-blocking actions

ATROPINE - PHARMACOKINETICS

Absorption:

- The natural alkaloids and most tertiary antimuscarinic drugs are well absorbed from the gut and conjunctiva – some even over the skin (scopolamine)
- Penetrates cornea freely
- Quaternary ones only upto 30%

o Distribution:

- Atropine and the other tertiary agents are widely distributed in the body
- Scopolamine is rapidly and fully distributed into the central nervous system where it has greater effects than most other antimuscarinic drugs
- Quaternary derivatives are poorly taken up by the brain

Metabolism:

- Atropine is metabolized in liver by conjugation and 60% excretes unchanged in urine
- Effects disappear quickly within 2 Hrs except eye
- Hyoscine is more completely metabolized
- Preparations: Atropine IM or IV; Hyoscine Oral/IM/transdermal

PHARMACOLOGICAL ACTIONS - CNS

- Overall CNS stimulant
- At low dose Atropine has only peripheral effects and minimal stimulant effect on CNS – low entry
- Scopolamine has more marked central effects (depressant) – amnesia and drowsiness.
- Atropine stimulates many medullary centres vagal, respiratory and vasomotor.
- Depresses vestibular excitation antimotion sickness property.
- Blocks basal ganglia cholinergic over activity blocks tremor, rigidity

PHARMACOLOGICAL ACTIONS OF ATROPINE - CVS

- Heart: Moderate and high doses: TACHYCARDIA (Blockade of M2 receptor on SA node - vagal tone decreases HR)
- Higher the vagal tone more Bradycardia in young adults
- AVN Atropine abbreviates refractory period of AVN– facilitates AV conduction rate (reduced PR interval in ECG)
- IM/SC injection initially transient BRADYCARDIA may be due to inhibition of prejunctional postsynaptic M1 autoreceptor inhibition (not due to stimulation of vagal centre)
- Evidenced by Pirenzepine (selective M1 blocker) injection does not cross BBB
- BP: No consistent effect tachycardia and VMC stimulation – raises BP; but histamine release and direct vasodilator action counteract

PHARMACOLOGICAL ACTIONS, ATROPINE-EYE

MYDRIASIS

- Topical atropine and other antimuscarinic drugs results in unopposed sympathetic dilator activity and mydriasis
- Cycloplegia and abolition of light reflex desirable in Ophthalmology
- Photophobia and blurring of near vision
- IOP rises: hazardous in narrow angle glaucoma
- Ory Eye: Not desirable

Fig. 8.1: Autonomic control of pupil (A); and site of action of mydriatics (B) and miotics (C)

ATROPINE ON SMOOTH MUSCLE

- Respiratory: Bronchodilatation and reduction in airway resistance – COPD and asthma patients
- Urinary: Relaxation of ureter & bladder urinary retention in older males with BHP
 - Sometimes useful in increasing bladder capacity and controlling detrussor hyperreflexia - neurogenic bladder/enuresis
- Visceral SM: Relaxation mediated by M3 blockade
 - Tone and amplitude of contraction of Stomach and Intestine reduced
 - Passage of chyme reduced <u>CONSTIPATON</u> and relieve of <u>SPASM</u>
 - But, less peristalsis suppression ENS
 - More effective to exogenous ACh administration

ATROPINE ON GLANDS

- Decreases salivary, sweat, tracheobronchial and lachrymal secretions (M₃ blockade)
 - dryness of mouth, dry skin and conjunctiva and difficulty in talking and swallowing
- Stomach (M₁): decreases acid, pepsin and mucus secretions – pH of gastric contents may increase – in empty stomach
- But pH not interfered
 — as also decreases bicarbonate
 (HCO₃) secretion Higher doses required to cause
 acidity
- Atropine is less efficacious than H₂ blockers
- No effect on intestinal and pancreatic secretion
- No effect on bile production

PHARMACOLOGICAL ACTIONS OF ATROPINE — CONTD.

- Temperature: Increases decrease sweating + stimulation of temperature regulating centre in hypothalumus
- Local anaesthetic action: on cornea
- Sensitivity of organs Saliva, sweat, bronchial secretion > smooth muscle of intestine and bladder > gastric gland and smooth muscle

Semi synthetics and Synthetics

ATROPINE SUBSTITUTES

- Semisynthetic: Mydriatic, antispasmodic, bronchodilator etc.
- Synthetic: Mydriatic, antisecretory-antispasmodic (quaternary - antisecretory or tertiary), vasicoselective, antiparkinsoian
- Quaternary compounds (for peripheral action only in GIT):
 - Incomplete oral absorption
 - Poor CNS and eye penetration
 - Slow elimination longer acting
 - Higher Nicotinic blocking property postural hypotension and impotence
 - Neuromuscular blockade at higher doses

INDIVIDUAL DRUGS — ATROPINE SUBSTITUTES - SEMISYNTHETIC

- Hyoscine Butylbromide: Oesophageal and GIT spastic conditions Buscopan – Oral/IM
- Atropine methonitrate: Abdominal colics and hypercidity Oral/IM
- Ipratropium Bromide: Selective action on Bronchial SM dilatation
 - Does not alter volume and cosistency of respiratory secretion
 - Enhanced mucocilliary clearance (contrast to Atropine)
 - Slowly acting (slow onset and late peak) Bronchodilator 1-2 Hrs (prophylactic use) – contrast to sympathomimetics – 4-6 Hrs
 - Acts mainly on larger Central airways (contrast to sympathomimetics)
 - More effective in COPD than Asthma
 - ADRs: cough, bad taste and nervousness rare systemic effects
- Tiotropium bromide: Ipratropium congener longer acting and more M₁/M₃ selective

ATROPINE SUBSTITUTES - QUATERNARY

- Propantheline: Used in peptic ulcer and gastritis
 reduces gastric acid secretion mild side
 effects not popular now
- Oxyphenonium: Peptic ulcer and gastric hypermotility
- Clinidium: Nervous dyspepsia, gastritis, IBS, colic etc.
- Pipenzolate methyl bromide: Flatulent dyspepsia, infantile colics
- Glycopyrrolate: IM/oral rapid acting without central effects – preanaesthetic medication

ATROPINE SUBSTITUTES – TERTIARY AMINES

- PARINA TRIC DRICKS IN TOCYCLOMINE HYDRICHLORIDE AND INNITIACION DE COLOR DE
- Dicyclomine , valethamate and Pirenzepine
- Dicyclomine: Direct SM relaxant and antispasmodic weak anticholinergic
 - Lesser side effects than Atropine
 - Also antiemetic morning sickness
 - Atropine toxicity in infants (not recommended below 6 months)
 - Dysmenorrhoea and IBS
- Valethmate: Dilatation of Cervix in delayed labour (visceral antispasmodic)
- O Pirenzepine: Selective M1 antagonist no action on M2 and M3 (no atropinic side effects)
 - Decreases gastric acid secretion promotes ulcer hea
 - Less popular now

ATROPINE SUBSTITUTES

- VASICOSELECTIVE - CONTD.

Oxybutynin:

- Specific selectivity for receptors in Urinary bladder and salivary gland (M1/M3)
- Additional smooth muscle relaxation property and local anaesthetic property
- Uses
 - Detrussor instability urinary frequency and incontinence
 - Spina bifida and nocturnal enuresis
 - Involuntary voiding in patients with neurologic disease children with meningomyelocele
 - Bladder surgery urologic surgery
 - Dose: 5 mg BD/tds or local instillation
- Tolterodine M3 selective–overactive bladder with urinary urgency
- Flavoxate similar to Oxybutynin
- Drotaverine: Non anticholinergic smooth muscle relaxant inhibition of PDE-4 - elevation of cAMP/cGMP – sm relaxation
 - Renal colic, biliary colic, IBS, uterine spasms etc.
 - No anticholinergic side effects Dose: 40 80 mg tds

ATROPINE SUBSTITUTES

- MYDRIATICS

Atropine: Slow and long lasting

Onset of action: 30 – 40 minutes

Cycloplegia: 1 – 3 Hours

Duration of action: 7 – 10 days

Fig. 8.1: Autocom; cored of page (4); and pile of page (5); and make (5).

	Homatropine	Cyclopentolate	Tropicamide
Potency	10 times less	Potent	Less reliable
Onset of action	45 – 60 min	30 – 60 min	20 – 40 min
Duration of action	1 – 3 days and 1-2 days	1 day	3 – 6 Hours
Children use	Unsatisfactory cycloplegia	Behavioural abnormality	Mental and mood changes

ATROPINE: THERAPEUTIC USES ANTISECRETORY

- Preanaesthetic medication: atropine, hyoscine and glycopyrrolate etc.
 - Defn.: Refers to use of drugs before anaesthesia to make it more pleasant and safe
 - Irritant GA (ether) salivary and tracheobronchial secretion
 - To reduce secretions and also halothane induced ventricular arrhythmia (in vagal slowing down)
 - To prevent laryngospasm increased respiratory secretions cause reflex laryngospasm
- Peptic ulcer: Fasting and neurogenic phase only Gastric phase not reduced – Not popular anymore
- Pulmonary embolism: reduces reflex pulmonary secretions

ATROPINE: THERAPEUTIC USES ANTISPASMODIC

- Intestinal and renal colic and abdominal cramps

 not in biliary colic
- Diarrhoea (nervous and drug induced) –
 Lomotil --- not in infective ones
- Spastic constipation, IBS
- Pylorospasm, gastric hypermotility, gastritis, nervous dyspepsia etc.
- Urinary frequency and urgency and nocturnal enuresis (children) - ???
- Dysmenorrhoea

ATROPINE: THERAPEUTIC USES – BRONCHIAL ASTHMA, ASTHMATIC BRONCHITIS AND COPD

- Reflex vagal activity bronchoconstriction and increased secretion – in bronchitis and COPD – lesser in asthma
- Oral Atropine bronchodilatation
 - Disadvantages: dry up secretions in RT inspissations and plugging in bronchioles – collapse – plus decreased mucocilliary clearance
 - Inhaled Ipratropium Br does not decrease secretions and impair mucociliary clearance - useful in bronchitis and COPD
 - For regular prophylaxis not to terminate acute attack

ANTICHOLINERGICS - MYDRIATIC AND CYCLOPLEGIC - OPHTHALMIC USES

- Used as eye drop or ointment:
 - Diagnostic: Atropine 1% ointment is used
 - Measurement of refractive error mydriasis and cycloplegia
 - Preferred ones: Homatropine, Tropicamide and cyclopentolate
 shorter action
 - However no cycloplegia in children by newer ones
 - Atropine 1% ointment still preferred in children below 5 yrs
 - Ophthalmic examination of retina fundoscopy (shorter acting preferred)
 - Therapeutic :
 - For resting eye: Iritis, iridocyclitis, keratitis, corneal ulcer etc.
 - Alternating with miotics (prevention of synechia)

USES OF ANTICHOLINERGICS - CONTD.

- CVS: Myocardial Infarction, Digitalis toxicity to counteract reflex vagal bradycardia and partial heart block
- Parkinsonism: Mild cases of parkinsonism (early cases), Drug induced Parkinsonism and adjunct to Levodopa
- Motion sickness:
 - Hyoscine (scopolamine) is the drug used Oral, injection and transdermal patch
 - 0.2 mg orally given as prophylaxis before journey lasts 4-6 hours transdermal preparations
 - Not effective in other type of vomiting
- Twilight sleep and maniacal states: Hyoscine sedation and amnesia – lie detector
- Atropine: Antidote for Anti-ChE & Mushroom poisoning, and to block Muscarinic effects of Neostigmine, Cobra envenomation

ANTICHOLINERGIC - ADRS

- Commonly occurring but of non serious type
- Mydriasis and cycloplegia using as antisecretory or Preanaesthetic medication
- Belladona Poisoning: Drug overdose and consumption of seeds of berries of belladona/datura
 - Symptoms:
 - Dry mouth, difficulty in swallowing and talking
 - Dry, flushed and hot skin (face & neck), fever, decreased bowel sound, dilated pupil, photophobia, difficulty in micturation
 - Excitement, psychotic behavior, delirium and hallucinations
 - Hypotension, weak and rapid pulse, respiratory depression and cardiovascular collapse
 - Convulsions and coma

BELLADONA POISONING - TREATMENT

- Diagnosis: Methacholine 5 mg or Neostigmine 1 mg SC – no muscarinic effects
- Treatment:
 - Gastric lavage in case of ingestion tannic acid
 - Dark Room and cold sponging and ice bags
 - Physostigmine 1–3 mg SC or IV
 - Maintenance of blood volume, assisted respiration and Diazepam to control convulsions
 - Other supportive measures

ANTICHOLINERGIC - CONTRAINDICATIONS

- Glaucoma Narrow angle (Precipitation of angle closure)
- BHP urinary retention
- Acid peptic ulcer diseases (Non-selective ones) precipitation of symptoms

DRUGS ACTING ON AUTONOMIC GANGLIA

- ACh is excitatory neurotransmitter parasympathetic and sympathetic
- Drugs which inhibit synthesis or release interfere with ganglionic transmission
- N_N mediate rapid depolarization of ganglion cells
 - also present are M₁ & M₂, adrenergic, dopaminergic, amino acid, peptidergic receptors - slow – mediate slowly developing and longer lasting effects
 - Released from preganglionic cholinergic terminals but by themselves
 - One transmitter one cell junction ... Over simplification

GANGLION STIMULANTS AND BLOCKERS

Ganglion stimulants:

- Selective agonists: Nicotine (small dose), Lobeline, DMPP, TMA and Varenicline
- Non-selective: Acetylcholine, carbachol, Pilocarpine, Anticholinesterases

Ganglion Blockers:

- Competitive blockers:
 - Quaternary compounds: Hexamethonium, Pentolinium
 - Secondary/tertiary: Mecamylamine, Pempidine
 - Monosulfonium compound:
 Trimethaphancamforsulfonate
- Persistent depolarizers: Nicotine (large dose) and Anticholinesterases (large doses)

NICOTINE

- Source alkaloid in Nicotiana tabacum
- Action stimulation of Para symp and symp ganglia via N_N and N_M receptors at low dose
 - Large doses persistent depolarization
- Only Indication short term nicotine replacement in tobacco abstinent Subjects

PHARMACOTHERAPY OF SMOKING CESSATION

- Difficult to quit Nicotine dependence counseling and motivation
- o Aim of treatment:
 - To reduce the craving for satisfying (reward) effects of nicotine
 - To suppress the physical withdrawal symptoms
- Drugs: Nicotine replacement, Partial agonists of α4β2 Nicotinic receptors (Varenicline) and antidepressants (Bupropion)
- Nicotine transdermal: once daily on the hip/abdomen/chest/upper arm – supresses nicotine withdrawal but craving only partially (10, 20, 30 cm2 patches)
 - Also nicotine chewing gum alternative of patches (NULIFE 1, 2, 4 mg chewing gums)
 - ADRs of nicotine replacement: headache, dyspepsia, abdominal cramps, loose motion, flu like symptoms etc

VARENICLINE

- Partial agonists of α4β2 NR receptor
- MOA: Reinforcing effects mediated by α4β2 NR nucleus accumbens and mesolimbic areas
 - Normally, activation of α4β2 NR by nicotine induces DA release – satisfaction/reward and reinforcing effect
 - PA activity of varenicline nicotine substitution, but blocks reward effects of smoking
 - Reduce craving and withdrawal symptoms
 - Comparable to nicotine replacement and Bupropion
- ADRs: Mood changes, irrational behaviour, appetite and taste disturbances, sleep disorder and agitation – suicidal thoughts
- Bupropion: atypical antidepressant discussed elsewhere
- Ganglion blockers no clinical use anymore

SUMMARY

- Atropine and its Pharmacological Effects
 - Therapeutic uses of Atropine
 - Mechanism of Mydriasis and Cycloplegia
- Names of Atropine Substitutes with their Uses
 - Details of Atropine Substitutes Ipratropium bromide, Dicyclomine, Oxybutynin
- Treatment of Atropine Poisoning
- Names of Ganglion Stimulants and Blockers Drugs antismoking drugs (short note)

THANK YOU