

DEFINITION:

- monosaccharide (1 of 3 dietary monosaccharide)
- main type of sugar in the blood (GLUCOSE = DEXTROSE)
- major source of energy for the body's cells (Glycolysis)
- comes from the foods we eat or the body can make it from other substances (Gluconeogenesis)

DEFINITION:

- carried to the cells through the bloodstream.
- Several hormones, including insulin, control glucose levels in the blood

Fruit and Vegetables

Meat Products

- are good sources of glucose (Group Health Research Institute)
- meat is a protein
- human body can convert some proteins into glucose (proteins like peanut butter, fish and cheese can be converted into glucose)
- proteins have little effect on blood sugar levels (glucose from the protein is stored in the liver)

Fats

- Butter is a fat-based food
- contains a small amount of glucose.
- the body converts 10 % of the fats consumed into glucose (Group Health Research Institute)
- fats consumption results to a gradual increase in blood sugar (the body convert fats into glucose at a slow rate
- other fats that are converted into glucose are avocados, salad dressing and olive oil.

- Grains
- starches or complex carbohydrates:

rice, wheat, barley and oats

- naturally contain glucose (American Diabetes Association).
- commercially processed grain products:

breads, pastas, instant oatmeal, cereals, pastries and desserts

 contain large amounts of glucose (addition of sweeteners as white sugar, brown sugar, and corn syrup)

- Preference for Glucose in bodily functions:
- lower tendency to react non-specifically with amino groups of proteins
- results to low rate of Glycation (protein or lipid covalently bonds with a sugar)
 - Glycolipids
 - Glycoproteins
 - reduces or destroys function of many enzymes
 - Long term complications of diabetes (blindness, renal failure, etc.)
 are due to Glycation

- cells use it as the primary source of energy and a metabolic intermediate (from bacteria to humans)
- aerobic respiration (with O₂ in mitochondrion)
- glycolysis (with or without O₂ glucose to pyruvate, in cytoplasm)
- citric acid/Kreb's cycle (with O₂, Acetyl CoA broken down to CO₂ and H₂O producing ATP)
- anaerobic respiration (without O₂ in cytoplasm)
- fermentation (without O₂ pyruvate to lactic acid, in cytoplasm)

- main products of photosynthesis and fuels for cellular respiration (plants)
- Light-independet or Calvin cyle

- Analyte in blood tests
- eating or fasting affects results
- high level of glucose may be due to prediabetes or diabetes mellitus

- Glucose in Glycolysis
- Phosphorylation of Glucose by ATP
- Conversion to 5-carbon ring isomer
- Phosphorylation 5-carbon ring isomer by ATP
- Processing into two molecules by enzyme
- Oxidation of the two molecules, losing protons and gaining phosphate groups; two NAD+ to NADH
- Phosphorylation of ADP yields two new molecules and two ATP
- Moving of phosphate group to 2nd carbon
- Dehydration of the two molecules into two highenergy molecules
- Phosphorylation of two ADPs by high-energy molecules producing two more ATP and two pyruvate

- As a precursor for synthesis of several important substances:
- monomer
- energy storage: starch and glycogen
- structure: cellulose and chitin
- oligosaccharides of glucose (fructose, galactose)
- Glycosylation: glycoprotein and glycolipid
- broken down to synthesize other molecules (lipids, amino acids, ascorbic acid)

- Industrial use
- Vitamin C or ascorbic acid
- Citric acid
- Gluconic acid
- Bio-ethanol
- Polylactic acid
- ☐ sorbitol

STRUCTURE

Glucose isomers, all of C₆H₁₂O₆

NOMENCLATURE:

- Hexoses 6 carbon + "-ose"
- Aldoses aldehyde group at one end
- Stereoisomers Dextrotation(D) and Levorotation(L) Conformations
- More than one chiral center, D and L conformation refers to asymmetric carbon

farthest from the aldehyde group

- D conformation most abundant in nature
- D and L are mirror images

D-glucose

L-glucose

NOMENCLATURE:

- Hexoses can cyclize, as the aldehyde or ketone group reacts with a –OH on one of the distal carbons.
- Cyclization of glucose produces a new asymmetric center at C1, with the two stereoisomers called anomers, a (below ring) & b (above ring)

NOMENCLATURE:

- Sugar acids aldehyde or hydroxyl is oxidized to carboxylic acid ex. gluconic acid and glucuronic acid
- Amino sugar amine group takes the place of one hydroxyl ex. glucosamine

α-D-glucosamine

D-gluconic acid D-glucuronic acid

PHYSICAL PROPERTIES:

- Appearance colorless solution, white powder
- crystallised from water solutions: α-glucopyranose, β-glucopyranose, and β-glucopyranose hydrate
- Solubility easily soluble in water (91 g/100 mL), acetic acid, blood, and other solvents
- Optical activity dextrorotatory, rotates polarized light clockwise
- Molar mass 180.16 g/mol
- Melting point α-D-glucose: 146 °C; β-D-glucose: 150 °C

CHEMICAL PROPERTIES:

- oxidized to yield energy(ATP) and water and CO₂
- broken to produce lipids and amino acids
- violent reaction with Sodium peroxide and Potassium nitrate
- simple sugar easily broken down by the body
- chemical stability ring form
- regulated by insulin in the blood
- glycosylation glucose added to lipids or proteins
- phosphorylated to reduce diffusion in cells
- glycogenolysis breakdown on glycogen into glucose
- gluconeogenesis non-carbohydrate into glucose

SPECIFIC TEST

Benedict's Test

- test for reducing sugars
- turns solution with glucose, red/orange

THATIS ALL'OU!