Hyponatremia in cirrhosis

 A 49-year-old male, diagnosed patient of cryptogenic cirrhosis has been admitted with grade 3 HE (no localizing signs/CT head elsewhere normal). He has no fever. His labs shows Hb-9g/dl, Plt-65 thousands, TLC-3400, TB-2.0mg%, S. Cr-2.0 mg%, S. Na- 117 meq/dl. There is h/o ascitic tap 4-5 liters elsewhere 4 days back.

Hb	9	Ur	
TLC	3400	Cr	2
PLT	65k	Na	117
INR		Κ	5.2
T Bil	2		
AST			
ALT			

Introduction

- 95 to 98% of total body sodium resides in the extracellular fluid (ECF)
- Serum sodium concentration is influenced by water metabolism rather than sodium intake and excretion
- Absolute or relative water retention causes hyponatremia, excessive fluid losshypernatremia
- Baroreceptors, osmoreceptors and neurohormonal system maintains total body water in constant state

Introduction

- Hyponatremia is defined as a serum sodium concentration of less than 135 mEq/L.
- In cirrhosis by consensus, hyponatremia defined as a serum sodium of less than 130 mEq/L
- Most common electrolyte disorder in cirrhosis.
- Predominantly hypervolemic or dilutional, hypovolumic (<10%)
- Patients with hyponatremia usually have decompensated liver disease
- Predictor of poor outcomes

Prevalence of hyponatremia in cirrhosis

Conventional definition: Serum sodium ≤135 meq/L Hyponatremia in cirrhosis : Serum sodium ≤130 meq/L *

Author and Publication year	Patient characteristic	Prevalence (<135 meq/L)	Prevalence(<130 meq/L)
Angeli et al (2006)	Outpatients	40%	-
Angeli et al (2006)	In Patients	57%	21.6%
Kim et al (2009)	In patients	20.8%	-
Jenq et al (2010)	In patients	53.2%	28.6%
Sheikh et al (2010)	In patients	51.6%	26.7%

Prevalence of hyponatremia in cirrhosis

Bernardi M et al. *Hepatol Int*. 2018

Normal renal physiology of sodium and water homeostasis

- Multiple hormones are involved in renal regulation of water
 - Angiotensin
 - Aldosterone
 - Prostaglandin
 - ADH

Gines et al, Hepatology, 1998 Alukal et al, Am J Gastroenterol, 2020

Renal changes in portal hypertension leading to decrease in water clearance

Pathogenesis

Activate Windows Go to Settings to activate \

Alukal et al.Am J Gastroenterol,2020

Mechanisms of excessive water absorption mediated by the release antidiuretic hormone (ADH).

Why addressing hyponatremia is important?

Clinical outcomes of hyponatremia of cirrhosis

Association between HRS, SBP and hyponatremia: Multiple issues in a sick patient

Liver Failure and Liver Disease 🛛 🔂 Free Access

Hyponatremia in cirrhosis: Results of a patient population survey[†]

Paolo Angeli 🔀 Florence Wong, Hugh Watson, Pere Ginès, CAPPS Investigators

- A large prospective multicenter study included (n-995) cirrhotic patients
- hyponatremia was associated with
 - higher prevalence of refractory ascites,
 - higher requirement of large-volume paracentesis,
 - shorter time interval between paracentesis.
 - higher incidence of HE,SBP,HRS

Association between HRS, SBP and hyponatremia: Multiple issues in a sick patient

Hyponatremia in Cirrhosis: Results of a Patient Population Survey

Paolo Angeli,¹ Florence Wong,² Hugh Watson,³ Pere Ginès,⁴ and the CAPPS Investigators

	131–135 mmol/L (95% Cl)	≤130 mmol/L (95% Cl)
Hepatic encephalopathy	1.69 (1.16-2.45)	3.40 (2.35-4.92)
Hepatorenal syndrome	1.75 (1.00-3.05)	3.45 (2.04-5.82)
Spontaneous bacterial peritonitis	1.44 (0.85-2.43)	2.36 (1.41-3.93)
Gastrointestinal bleeding	0.93 (0.56-1.54)	1.48 (0.91-2.41)

NOTE. The group of patients with serum sodium >135 mmol/L was used as a reference.

Angeli P et al. Hepatology 2006

Hyponatremia and Complications

Major Complications	> 135 mmol/L n (%)	$\leq 135 \text{ mmol/L}$ n (%)	Odds Ratios (95% CI)	Р
Hospital mortality	33 (56)	49 (73)	2.145 (1.018-4.521)	0.043
Hepatic encephalopathy, ICU first day	35 (59)	52 (78)	2.377 (1.096-5.157)	0.027
Ascites, ICU first day	21 (36)	48 (72)	4.571 (2.154-9.702)	< 0.001
Sepsis, ICU first day	18 (31)	32 (48)	2.083 (1.001-4.333)	0.048
Renal failure, ICU first day	34 (58)	56 (84)	3.743 (1.637-8.562)	0.001
Gastrointestinal bleeding, ICU first day	42 (71)	42 (63)	0.680 (0.321-1.440)	NS (0.313)
EV bleeding, ICU first day	30 (51)	28 (42)	0.694 (0.343-1.404)	NS (0.309)
Peptic ulcer bleeding, ICU first day	19 (32)	21 (31)	0.961 (0.453-2.038)	NS (0.918)
Both EV and peptic ulcer bleeding	7 (12)	7 (10)	0.867 (0.285-2.634)	NS (0.801)

The group of patients with serum sodium concentration > 135 mmol/L was used as a reference.

CI indicates confidence intervals; EV, esophageal varices; ICU, intensive care unit; NS, not significant.

Serum Sodium Predicts Prognosis in Critically Ill Cirrhotic Patients

Jenq, Chang-Chyi MD^{*}; Tsai, Ming-Hung MD[†]; Tian, Ya-Chung PhD^{*}; Chang, Ming-Yang PhD^{*}; Lin, Chan-Yu MD^{*}; Lien, Jau-Min PhD[†]; Chen, Yung-Chang MD^{*}; Fang, Ji-Tseng MD^{*}; Chen, Pan-Chi MD[†]; Yang, Chih-Wei MD^{*}

Author Information⊗

- Comparing with serum sodium >135 mmol/L, patients with serum sodium ≤135 mmol/L had a greater in-hospital mortality (55.9% vs. 73.1%, P=0.043).
- at 6-month follow-up after hospital discharge differed significantly (P<0.05) between both groups
- Low serum sodium levels in critically ill cirrhotic patients are associated with high complications of liver cirrhosis, in-hospital mortality, and poor short-term prognosis

Hyponatremia and hepatic encephalopathy

Astrocytes contains glutamine synthase \rightarrow Detoxify ammonia

Low grade cerebral edema is one of the factor associated with HE

Deranged osmotic balance in cirrhotic brain, hyponatremia is second osmotic hit to astrocytes, can cause cell swelling and dysfunction

Bernardi M et al. Hepatol Int. 2018

Cerebral adaptation to hyponatremia

- Brain and extracellular fluid osmolality are in balance
- When serum Na falls, water moves inside brain
- The cell swelling leads to extrusion of intracellular solutes
- Organic osmolytes-Glutamine,glutamate,taurine and myo-inositol are involved in long term adaptation of osmotic changes

Ginès P, Cárdenas A. Semin Liver Dis. 2008

Hyponatremia Is a Risk Factor of Hepatic Encephalopathy in Patients With Cirrhosis: A Prospective Study With Time-Dependent Analysis

Mónica Guevara^{1-3,7}, M.E. Baccaro^{1-3,7}, Aldo Torre¹, Beatriz Gómez-Ansón⁴, José Ríos⁵, Ferrán Torres⁵, Lorena Rami⁶, Gemma C. Monté-Rubio⁴, Marta Martín-Llahí¹⁻³, Vicente Arroyo¹⁻³ and Pere Ginès¹⁻³

 Table 3. Variables with independent predictive value in the development of overt HE in the multivariate analysis (Prentice, Williams, and Peterson models)

	HR	95% CI	P value
Model 1			
Hyponatremia	10.69	(4.39;26.03)	<0.001
Earlier hepatic encephalopathy	2.94	(1.30; 6.61)	0.009
Bilirubin≥2.1 mg/dl	2.4	(0.88;6.60)	0.089
Model 2			
Hyponatremia	9.36	(4.66;18.80)	< 0.001
Earlier hepatic encephalopathy	1.78	(1.10; 2.87)	0.018
Creatinine≥1.2 mg/dl	2.31	(1.22;4.38)	0.01
Model 3			
Hyponatremia	8.36	(3.52; 19.82)	< 0.001
Earlier hepatic encephalopathy	2.23	(1.09; 4.56)	0.029
Creatinine≥1.2 mg/dl	2.36	(1.11; 5.00)	0.025
Bilirubin≥2.1 mg/dl	2.74	(1.16; 6.47)	0.022

CI, confidence interval; HE, hepatic encephalopathy; HR, hazard ratio.

- 61 patients with cirrhosis were followed for 1 year for development of overt HE
- 27 patients developed 57 episodes of HE
- Hyponatremia(NA <130 meq/L),Overt HE,Bilirubin and creatinine were independent predictors

Etiology-causes of Hyponatremia

➤Cirrhosis Itself

- ≻GI fluid losses
- ➢ Renal sodium losses
- Adrenal insufficiency
- ➤Terlipressin
- ► Low solute intake
- ➢ Pseudohyponatremia

Terlipressin precipitates hyponatremia

ORIGINAL ARTICLE

A retrospective analysis of hyponatremia during terlipressin treatment in patients with esophageal or gastric variceal bleeding due to portal hypertension

Xv Han, 😳 Jia Li, 😳 Ji-Ming Yang, Min Gao and Lei Wang

Tianjin Second People's Hospital, Tianjin Hepatopathy Research Institute, Tianjin, China

 During the treatment, serum sodium levels decreased from 137.78 to 126.59 mmol/L (P < 0.05), with an average decrease of 11.19 mmol/L.
 The serum sodium level decreased by

- Iess than 5 mmol/L in 12 patients (27.27%),
- 5–10 mmol/L in 13 patients (27.27%),
- more than 10 mmol/L in 19 patients (43.18%)

Risk Factors for Developing Hyponatremia During Terlipressin Treatment: A Retrospective Analyses in Variceal Bleeding

Sun Young Yim ¹, Yeon Seok Seo, Chang Ho Jung, Tae Hyung Kim, Eun Sun Kim, Bora Keum, Ji Hoon Kim, Hyonggin An, Hyung Joon Yim, Jong Eun Yeon, Yoon Tae Jeen, Hong Sik Lee, Hoon Jai Chun, Kwan Soo Byun, Soon Ho Um, Chang Duck Kim, Ho Sang Ryu

n-151 patients

- Hyponatremia was defined as a decrease in serum sodium (Na) level of >5 mEq/L from the baseline level
- Younger age, lower Child-Pugh score(child A), higher serum Na level, and longer duration of terlipressin treatment were independent risk factors.
- lower body mass index was an additional risk factor in this group.

ORIGINAL ARTICLE

Terlipressin plus Albumin for the Treatment of Type 1 Hepatorenal Syndrome

F. Wong, S.C. Pappas, M.P. Curry, K.R. Reddy, R.A. Rubin, M.K. Porayko, S.A. Gonzalez, K. Mumtaz, N. Lim, D.A. Simonetto, P. Sharma, A.J. Sanyal, M.J. Mayo, R.T. Frederick, S. Escalante, and K. Jamil, for the CONFIRM Study Investigators*

CONFIRM trial

Randomized placebo controlled trial testing the use of terlipressin for HRS-1 in North America (CONFIRM trial)

Hyponatremia was not reported to be more common in terlipressintreated subjects.

Mechanism

- vasopressin analogue with greater affinity for the V2 receptor (VR) than that for the V1a receptor.
- mimic the actions of AVP in the renal collecting duct.
- mechanism may be related to endogenous vasopressin preconditioning.
- by binding to the V1 receptor on vascular smooth muscle, can contract blood vessels (mainly visceral blood vessels), leading to the redistribution of blood flow and contributing to the increase in arterial blood pressure and renal perfusion and the increase of sodium hydrochloride excretion in patient

- terlipressin also activates the V2 receptors of the basal lateral membrane of the main cells of the renal collecting duct
- Water permeability increases by 8–10 times, which could lead to dilution hyponatremia.

Hyponatremia in liver transplant recipients

- From January 2016, United Network for Organ Sharing(UNOS) incorporated sodium to the MELD score as it is better score to predict waiting list mortality.
- It was seen that in the patients, who are on the LT waiting list with sNa (125–140 mmol/L), each millimole reduction in sNa was associated with a HR of 1.05.

Kim WR, Biggins SW, Kremers WK, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008

- Hyponatremia prior to LT is associated with a
 - longer hospital stay
 - long ICU stay, and neurological complications.
- There may be an increase in 1-year mortality in patients with severe hyponatremia (sNa< 120) before LT.

Addition of Sodium to MELD- MELD Na score

- Decrease in serum sodium was associated with an increase in the risk of death while patients were on the waiting list
- Most meaningful differential effect of hyponatremia on mortality at a serum sodium concentration between 125 and 140 mmol per liter

MELD Na over MELD

Advantages

- More predictive of risk of death
- MELD Na can reduce waiting list mortality
- Complications like HRS and refractory ascites which usually associated with hyponatremia are better covered

Disadvantages

- Sodium concentration depends upon use of diuretics and fluid status
- Modest efficacy due to limited population having hyponatremia among transplant list candidate
- Score changes only in sodium range of 120-135 meq/L
- Possibility of 'gaming' by altering sodium value

Clinical features of hyponatremia

The severity of clinical symptoms due to hyponatremia roughly correlates with serum osmolality and level of serum sodium in extracellular fluid.

The rate of fall rather than the absolute fall in serum sodium from baseline is the most important predictor of the severity of symptoms.

What has possibly happened to this patient? PICD

- Increases of >50% of baseline plasma renin activity to a value more than 4 ng/mL/h on the fifth to sixth day after paracentesis.
- Refractory ascites (10% cirrhotics) required LVP
- safe method, sometimes with circulatory dysfunction in a significant percentage of patients (PICD)
- ➢PICD usually occurs following LVP (>5−6 L)
- ➢PICD results in
 - ➤ faster reaccumulation of ascites
 - > hyponatremia
 - ➤ renal impairment
 - ➤ shorter survival

• PICD is a dreaded complication of paracentesis and is associated with a high incidence of morbidity and mortality.

- often overlooked and is a commonly missed diagnosis.
- The differentials in any patient presenting with worsening of complications of cirrhosis should include PICD.
- The diagnosis is clinical, and the measurement of PRA may or may not aid in diagnosis.
- PICD should be redefined as any complication (kidney injury, hyponatremia, encephalopathy, variceal bleed) developing after paracentesis with or without a concurrent rise in PRA.

Pathophysiology of PICD

Differential diagnosis of PICD complication

Complication of PICD	Common differentials in practice
Hyponatremia	Diuretic induced/dilutional
Encephalopathy	Type B/C encephalopathy Dyselectrolytemia Uremia
Acute kidney injury	Diuretic-induced

Prevention of PICD

□Plasma volume expansion with intravenous salt poor albumin at a dose of 8 g per liter of ascitic fluid removed, when more than 5 L of ascitic fluid is removed at any single session, has been shown to prevent not only PPCD but also hyponatremia and mortality

Albumin	Evidence from a higher number of trials	Cost Need for IV infusion
Terlipressin	Efficacy similar to albumin	Evidence from small pilot studies
Noradrenaline	Efficacy similar to albumin Economical	Adverse events are common Need for IV infusion/ admission
Midodrine	Good oral bioavailability Maintains MAP effectively Can be given in daycare/outpatient	Small pilot studies Less studied Efficacy still controversial

Diagnosis and classifcation of Hyponatremia

CLASSIFICATION

• Based on total body water (TBW):

Hypervolemic (ascites/anasarca/pedal edema) -90% Hypovolemic (No ascites/pedal edema) overuse of diuretics or diarrhea -10%

• Based on clinical severity :

Moderately severe (nausea, confusion, and headache) Severe/profound (vomiting, cardio respiratory collapse, seizures, and coma)

• Based on duration:

- Acute (<48 h)
- Chronic (>48 h)

Types of hyponatremia in cirrhosis

- Hypovolemic hyponatremia
- Hypervolemic hyponatremia
- Euvolemic hyponatremia

- Acute-Onset <48 hour
- Chronic-Onset >48 hour
- Mild,(135-125 meq/L)
- Moderate(125-120 meq/L)
- Severe(<120 meq/L)

Management

Hypervolemic hyponatremia in cirrhosis-whom to treat?

- All patients do not require treatment.
- Most of the patients remain asymptomatic due to chronicity and neurological adaptation.
- No clear serum sodium level is defined for initiation of treatment.
- Universally accepted criteria
- ➢Patient with severe hyponatremia (sNa<120 mmol/L) and/or</p>
- >Hyponatremia with neurological symptoms

Treatment options for hyponatremia

Diuretics withdrawal and correction of hypokalemia

Albumin infusion

Hypertonic(3%) Saline

Vaptans

TIPSS

If no improvement in 24-48 hours, other options need to be considered

Discontinuation of diuretics and correction of hypokalemia

Hypokalemia is also known to precipitate and worsen HE through increased ammoniagenesis in the kidney via production of renal glutaminase

Role of Albumin

- Intravenous albumin can increase urinary free-water clearance by expanding intravascular volume, leading to a rise in serum sodium
- Human albumin Sodium content- 145± 15 meqL
- Recommended dose for this purpose- 40g/day

Bajaj et al, Am J Gastroenterol, 2018

Impact of albumin in resolution of hyponatremia

Table 1 Continued				
	Albumin- (<i>n</i> =349)	Albumin+ ($n = 777$)	<i>p</i> -value	
NACSELD-ACLF	5% (16/349)	16% (121/776)	< 0.0001	
Length of stay (days)	9.11 (9.67)	16.80 (18.60)	< 0.0001	
In-hospital mortality	4% (14/349)	8% (64/777)	0.01	
30-day mortality	8% (27/349)	16% (126/777)	0.0001	
Resolution of hyponatremia	61% (213/347)	69% (537/774)	0.0085	

NACSELD-ACLF score [13] is defined as the occurrence of two of the following: brain failure defined by grade 3 or 4 hepatic encephalopathy, circulatory failure defined by shock requiring vasopressors, renal failure defined by need for renal replacement therapy, and respiratory failure defined by use of BiPAP or mechanical ventilation

- 1126 patients with hyponatremia were evaluated in prospective series
- Resolution of hyponatremia was associated with a higher 30-day survival independent of acute-on-chronic liver failure and renal function

Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial

	Incidence rate (95% CI)	Incidence rate ratio (95%CI)		p value
		SMT plus HA:SMT		
Complication				
SBP	*+		0.33 (0.19-0.55)	<0.001
Non-SBP bacterial infection*			0.70 (0.54-0.90)	0.005
Hepatic encephalopathy grade 3–4*	•	-	0-48 (0-37-0-63)	<0.001
Renal dysfunction with serum creatinine concentration > 1.5 mg/dL*] + _	-	0-50 (0-39-0-64)	<0.001
Hepatorenal syndrome type 1	•		0-39 (0-19-0-76)	0.004
Hyponatraemia with serum sodium concentration <130 mmol/L	+	+	0-51 (0-40-0-67)	<0.001
Hyperkalaemia with serum potassium concentration ≥5-5 mmol/I	· •		0.58 (0.41-0.82)	0-002

Incidence of hyponatremia (Na , 130 mEq/L) in the albumin group was lower than the SMT group with an incidence rate ratio of 0.51

Caraceni et al; The Lancet; 2018

Role of midodrine

- Despite stopping diuretics and NSBB, some patients may continue to have systemic hypotension.
- >In this subset of patients, midodrine can be used to increase MAP.
- Electrolyte free water clearance also increased ultimately mean serum sodium also increased

Hypertonic saline

Either symptomatic or severe

(<110 mEq/L)-hypertonic saline

may be administered through a

continuous infusion at a rate of

15–30 cc/hr

Na should not increase by more

than 8 mEq/L per day

٠

 Hypertonic saline (513 mEq/L Na) -usually not recommended for dilutional hyponatremia

Vasopressin receptor antagonist

- Vaptans are class of nonpeptide drug which blocks the action of ADH on V1 and V2 receptors
- Conivaptan nonselective antagonist of V1 and V2 receptor-more adverse events, not used in cirrhotic
- Tolvaptan-selective V2 receptor antagonist
- Increases the urine volume and solute free water excretion-aquaretics

USFDA black box warning to use vaptans in cirrhosis in view of severe hepatic injury –this has been reported at very high dose 120 mg/day)

Satavaptan-withdrawn due to high rate of GI bleed and renal failure in cirrhotics

Guidelines to administer Tolvaptan

- Tolvaptan should be
 - started under close monitoring-preferably in hospital
 - started at lower dose-15 mg/day and gradual increase up to 60 mg/day based on serum Na response-optimal correction not more than 8-10 mmol/L /day
 - avoided in patient with encephalopathy or who can't drink adequate water
 - administered carefully with CYP3A4 inhibitor drug- can potentiate the effect of vaptan

Assessment of response to therapy

- Response to therapy is defined as achievement of absolute value of ≥ 130 meq of sodium or increase in 5 meq/L from base line
- Response rate of various therapies
 - Free water restrictions- 20-33%
 - Hypertonic saline- 78-10%
 - Tolvaptan- 68-81 %

Relapse rate- 55%

Hyponatremia in patients awaiting for LT

Summary

- Hyponatremia in cirrhosis is very commonly encountered problem
- Associated with detrimental outcome in cirrhosis and is marker of poor prognosis
- Diagnosis requires thorough investigation
- Management options are limited specifically in hypervolemic hyponatremia
- Vaptans use may be beneficial in correction of lab values but not the survival
- Use of hypertonic saline(3%) should be judicious and overcorrection need to be avoided
- Patients undergoing liver transplantation are at higher risk for ODS, and slow SNa correction is recommended.

THANK YOU

Body volume status

