

Module 1/3

BIOMOLECULES

Agitha R. Menon PGT AECS, Indore

The major complex biomolecules of cells

Biomolecule	Building block	Major functions Basic structure and function of cell	
Protein	Amino acid		
DNA	Deoxyribonucleotide	Hereditary information	
RNA	Ribonucleotide Protein synthesis		
Polysaccharide	Monosaccharide Storage form of energy		
Lipids	Fatty acids & glycerol	Storage form of energy to meet long term demands	

Carbohydrates

- generally produced by plants
- Most have a general formula, $C_x(H_2O)_y$ (were known as hydrates of carbon)
- Ex.Glucose $(C_6H_{12}O_6)$ fits into the formula $C_6(H_2O)_6$.
- Definition: the carbohydrates are optically active polyhydroxy aldehydes/ ketones or the compounds which produce such units on hydrolysis.

How are Carbohydrates classified?

- On their <u>behavior towards hydrolysis</u>, they are divided into
 - Monosaccharides simple sugars with multiple
 OH groups. Based on number of carbons (3, 4, 5,
 6), a monosaccharide is a triose, tetrose, pentose or hexose.
 - Disaccharides 2 monosaccharides covalently linked.
 - Oligosaccharides a few monosaccharides covalently linked.
 - Polysaccharides polymers consisting of chains of monosaccharide or disaccharide units.

According to the functional group present

- Aldose If the carbohydrate contains an aldehyde. Aldotriose – containing three carbon atoms(Ex. Glyceraldehyde), aldotetrose, aldopentose (Ex. Ribose), aldohexose (Ex. Glucose)
- Ketose If the carbohydrate contains a ketone. Ketotriose, ketotetrose, ketopentose, ketohexose(Ex. Fructose)

Monosaccharides

Aldoses (e.g., glucose) have an aldehyde group at one end. Ketoses (e.g., fructose) have a keto group, usually at C2.

D vs L Designation

D & L designations are based on the configuration about the single asymmetric C in glyceraldehyde.

The lower representations are Fischer Projections.

Sugar Nomenclature

For sugars with more than one chiral center, **D** or **L** refers to the asymmetric **Carbon** farthest from the aldehyde or keto group.

Most naturally occurring sugars are D isomers.

As reducing or non reducing sugars

- All those carbohydrates which reduce
 Fehling's solution and Tollens' reagent are referred to as reducing sugars.
 - In disaccharides, if the reducing groups of monosaccharides i.e., aldehydic or ketonic groups are bonded, these are non-reducing sugars e.g. sucrose. On the other hand, sugars in which these functional groups are free, are called reducing sugars, for example, maltose and lactose.

Glucose

- Source: It is present in sweet fruits and honey.
- Ripe grapes
 also contain
 glucose in large
 amounts.

Preparation of Glucose:

$$C_{12} H_{22} O_{11} + H_2 O \xrightarrow{HCl} C_6 H_{12} O_6 + C_6 H_{12} O_6$$

Sucrose D-Glucose D fructose $[\alpha]_D = + 66.5^0$ $[\alpha]_D = 52.5^0 [\alpha]_D = -92.4^0$

$$(C_6 H_{12} O_5)_n + nH_2O \xrightarrow{H^+} nC_6 H_{12} O_6$$

Starch or 393 k glu cose cellulose 2-3 bars

Structure of Glucose

Molecular formula C ₆ H ₁₂ O ₆							
Glucose	Reaction	Reagent	Products	Proves that			
СНО	On prolonged heating with HI, it forms n-hexane	<u>ΗΙ, Δ</u>	CH ₃ -CH ₂ -CH ₂ -CH ₂ -CH ₃ -CH ₃ (n-Hexane)	all the six carbon atoms are linked in a straight chain.			
(CHOH) ₄ CH ₂ OH	Glucose reacts with hydroxylamine to form an oxime and adds a	NH ₂ OH	CH=N-OH (CHOH)₄ CH₂OH	These reactions confirm the presence of a carbonyl group			
	molecule of hydrogen cyanide to give cyanohydrin.	HCN >	CH OH (CHOH) ₄ CH ₂ OH	(>C = O) in glucose.			

Molecular formula, C₆H₁₂O₆ Reagent Reaction **Products** Glucose

acid, saccharic

acid.

CHO (CHOH) ₄ CH ₂ OH	Glucose gets oxidised to six carbon carboxylic acid (gluconic acid) on reaction with a mild oxidising agent like bromine water.	Br ₂ water	COOH (CHOH) ₄ (CH ₂ OH Gluconic acid	the carbonyl group is present as an aldehydic group.
	Acetylation of glucose with acetic anhydride gives glucose pentaacetate	Acetic anhydride	CHO O	which confirms the presence of five – OH groups attached to different carbon atoms.
	On oxidation with nitric acid, glucose as well as gluconic acid both yield a dicarboxylic	Oxidation	COOH COOH (CHOH), Oxidation (CHOH), COOH CH ₃ OH	This indicates the presence of a primary alcoholic (–OH)

Proves that

group in glucose.

Gluconic

acid

Saccharic

acid

Pentoses and hexoses can cyclize as the ketone or aldehyde reacts with a distal OH.

Glucose forms an intra-molecular hemiacetal, as the C1 aldehyde & C5 OH react, to form a 6-member pyranose ring, named after pyran.

These representations of the cyclic sugars
o2-07-2024 are called Haworth projections.

Cyclization of glucose produces a new asymmetric center at C1. The 2 stereoisomers are called anomers, $\alpha \& \beta$.

Haworth projections represent the cyclic sugars as having essentially planar rings, with the OH at the anomeric C1:

- α (OH below the ring)
- β (OH above the ring).

02-07-2024

Reactions and facts about glucose which cannot be explained by its open chain structure

- Despite having the aldehyde group, glucose does not give Schiff's test and it does not form the hydrogensulphite addition product with NaHSO₃.
- The pentaacetate of glucose does not react with hydroxylamine indicating the absence of free —CHO group.
- Glucose is found to **exist in 2 different crystalline forms which** α and β . The α -form of glucose (m.p. 419 K) is obtained by crystallisation from concentrated solution of glucose at 303 K while the β -form (m.p. 423 K) is obtained by crystallisation from hot and saturated aqueous solution at 371 K.

This behaviour could not be explained by the open chain structure.

Fructose

Fructose is an important ketohexose.

It is obtained along with glucose by the hydrolysis of

sucrose.

Fructose forms a 5-member furanose ring, by reaction of the C2 keto group with the OH on C5.

Its two cyclic forms, a and β, are obtained by the addition of -OH at C5 to the represented by Haworth (>C=O) group. The ring, thus formed, is a 5 membered furanose ring.

The cyclic structures of two anomers of fructose are structures as given.

References:

NCERT Class XII Chemistry Vol 2
 Google images