

One of the most
important concepts in
object-oriented
eIl CRERUEL
of inheritance.

It is the capability of one
class to inherit properties
from another class.

The technique of building
new classes from the
existing classes is called
inheritance.

Base Class /
Super Class

Derived from

Derived Class /
Sub Class

It is the class whose
properties are inherited by
another class.

It is also called Super
Class.

It is the class that inherit
properties from base class(es).

It is also called Sub Class.

It inherits all the properties of
the base class and can add
additional features to the
derived class.

CODE REUSABILITY

EASY TO IMPLEMENT REAL
WORLD MODELS

TRANSITIVE NATURE

It is any of the access labels:
private, public or protected.

It defines the accessibility of the
members of the base class within
the derived class.

If the visibility mode is not
specified, it will be taken as
private by default.

Private members can never be
inherited. Only the public and
protected members can be
inherited to the derived class. This
is the difference between the
private and protected members.

VISIBILITY MODES

Derived class visibility

Base Class
Visibility Public Private Protected
derivation derivation derivation

M private Not Not Not
. inherited inherited inherited

Protected Protected Private Protected

Public Public Private Protected

Access
Specifier of
E GRS

PRIVATE

PUBLIC

PROTECTED

Accessible
from own
class

Accessible
from derived
class

Accessible
from objects
outside class

Private members of the base class cannot
be inherited with any of the visibility
mode.

One is by making the visibility mode of
private members as public, but they will
be exposed to the outside world.

Another is to convert the private members
into protected so that they will be hidden
from the outside world but can be
inherited.

Friendship Derivation

Provide access to private and Private members cannot be
protected members. derived into another class.

A non-member function can It shares the features of base
make friendship to a class class and adds some more
aftributes

Two independent classes can The derived classes are created
have friendship, where friend with the help of base class.
function acts as bridge Derived class is a special
between them. instance of base class.

Friendship is not Derivation Derivation is a kind of
Friendship.

SINGLE INHERITANCE
MULTIPLE INHERITANCE
HIERARCHICAL INHERITANCE
MULTILEVEL INHERITANCE
HYBRID INHERITANCE

Derivation of a class from only
one base class is called SINGLE

Inheritance.

In the figure class Y is derived

from class X.

X

)

BASE CLASS

DERIVED CLASS

Syntax for SINGLE Inheritance

class . [visibility mode]
~ //DataMembers and MemberFunctions;

Example:

.......

zzzzzzz

Derivation of a class from SEVERAL
(TWO OR MORE) base classes is
called MULTIPLE Inheritance.

In the figure class Z is derived from
both the classes X & Y.

X

f

BASE CLASSES

DERIVED CLASS

Syntax for MULTIPLE Inheritance

class . [visibility mode]
~ [visibility mode] >

{

' //DataMembers an&‘M\emberFUncﬂons;

};,.

class " :public = public
S] ' -

i

Derivation of SEVERAL classes from
SINGLE base class is called
HIERARCHICAL Inheritance.

In the figure the classes Y & Z is
derived from the same class X.

X BASE CLASSES

Y L DERIVED CLASS

Syntax for HIERARCHICAL

Inhentance

class : [visibility mode]

}.

-1 iDerivedClassNc [\\rlslblllfy mode]
{ N

mmmmmmm—— N

(i

‘ﬁ--.i-ii;;:

.4 -\ ’
b\,“ d ,x_,\ .

T

/—I ’ V'»(f

CIdoS

-

When a sub class is
derived from a base
class which itself is
derived from another
class, it is known as
MULTILEVEL Inheritance.

In the figure the class Z is
derived from class Y,
which is a derived class
that is inherited from the
class X.

Syntax for MULTILEVEL

Inhentance
class : [visibility mode]

}.

class :[visbiitymode]
{ N

mmmmmmm—— N

(i

.
N

‘ﬁ--.i--i;;:

-\
g\,“ L} J

/—17 el »«f\

,')\ P

Derivation of a class
involving more than
one form of Inheritance
is known as HYBRID

inheritance.

As it is the derivation of
a class from other
derived classes, which
are derived from the
same base class.

The derived class need have a
consiructor as long as the base
class has a no-argument
consiructor.

If the base class has constructors
with arguments, then it is mandatory
for the derived class to have a
constructor and pass the arguments
to the base class constructor.

When an object of a derived class is
created, the constructor of the base
class is execvuted first and later the
constructor of the derived class.

Unlike constructors, destructors in
the class hierarchy are invoked in
the reverse order of the constructor
invocation.

It is one that has no instances and is
not designed to create objects.

It is only designed to be inherited
from.

It specifies an interface at a certain
level of inheritance and provides a
framework or skeleton, upon which
other classes can be built.

When classes are derived in the
form of hybrid inheritance, there can
be a problem by which multiple
copies of the base class members
come in the lowest level derived
class through the various
intermediate subclasses. Here
comes the virtual base class for
rescue.

class
{ public:
int a;

)

class : public
{ public:

int b;
¥

class : public
{ public:

intc;
%

class : public , public
{ public:

int d;
7

Class
contains
and

Class
contains
and

Class D

contains a,b,
ac, &d

class

{ public: only one copy of A will be inherited
int a;
|2
: : Class
class : virtual public tai
{ public: coniains
int b; and
¥
class = : virtual public C|CISS.
{ public: contains
int c; and
%
class : public , public Class D
{ public: contains a,b,
int d;

¥

c,&d

In inheritance, if the class D is derived
from the class B, it is said that D is a kind
of B; the class D has all the properties of
B in addition to the features of its own.

In OOP, the containership occurs when
an object of one class is contained in
another class as a data member.

In other words, a class can contain
objects of other classes as its members.

Example

class ABC
{

int a;
- float b;
~_public:
~ void fab();

j.'-.' ,"'f';f - \

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

