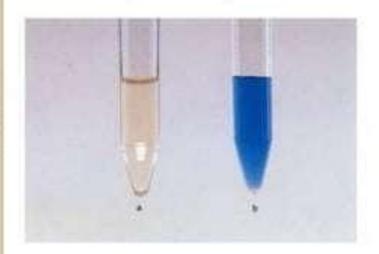
ANALYTICAL TOXICOLOGY

Pankaj sonsurkar Msc-2 Roll no-16 Institute of science

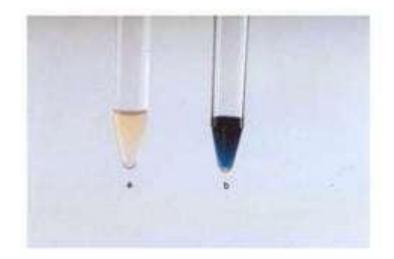
Urine

Urine is useful for screening tests as it is often available in large volumes and usually contains higher concentrations of drugs or other poisons than blood. The presence of metabolites may sometimes assist identification if chromatographic techniques are used. A 50-ml specimen from an adult, collected in a sealed, sterile container, is sufficient for most purposes; no preservative should be added. The sample should be obtained as soon as possible, ideally before any drug therapy is initiated.

Stomach contents

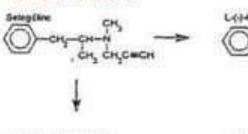

Stomach contents may include vomit, gastric aspirate and stomach washings — it is important to obtain the first sample of washings, since later samples may be very dilute. A volume of at least 20 ml is required to carry out a wide range of tests; no preservative should be added. This can be a very variable sample and additional procedures such as homogenization followed by filtration and/or centrifugation may be required to produce a fluid amenable to analysis.

Blood


Blood (plasma or serum) is normally reserved for quantitative assays but for some poisons, such as carbon monoxide and cyanide, whole blood has to be used for qualitative tests. For adults, a 10-ml sample should be collected in a heparinized tube on admission.

Phenothiazines (FPN test)

Paracetmol and phenacetin (ammonia test)



Imiparamine (Forrest test)

Paraquat and diquat (dithionite test)

Analysis of Metabolites of

Drug

L-(-)-Ampretamine

$$O$$
 R_1
 O
 R_2
 R_3

Barbituates

$$C_2H_5$$

Phenobarbital

Pentobarbital

Paraxanthine Theobromine Theophylline (84%) (12%) (4%)

Table 15-4 Urinary Metabolites of Benzodiazepines

Generic name	Brand name	Urinary metabolite		
Oxazapam	Serax	Oxazepam		
Temazepam	Restorii	Temszepam, Oxazepam		
Chlordiazepoxide	Librium	Nordiazepam, Oxazepam		
Diszepam	Valum	Diazepam, Nordiazepam, Oxazepam, Temazepam		
Prazepam	Centrax, Verstran	Nordiszepam, Oxazepam		
Clorazepate	Tranxene	Nordiszepam, Oxazepam		
Medazepam	Nobrium	Nonfiezepam, Oxazepam, Temazepam		
Alprazolam	Xanax	α-Hydroxyalprazolam		
Clonazepam	Klonopin	Aminocionazepam, Cionazepam		

Sample Treatment

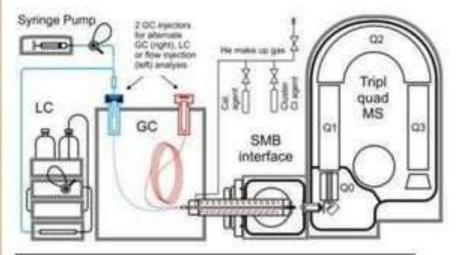
- Protein Precipitation (PP)
- It is accomplished by using organic solvent (typically acetonitrile or methanol) or an acid (typically perchloric or trichloroacetic acid). It is followed by centrifugation to separate proteins from liquid supernatant.
- Liquid-liquid extraction (LLE)
- To obtain a sensitive analysis for a complex biological media (plasma, urine) liquid-liquid extraction (LLE).
- LLE is in general simpler also less expensive and flexible as several samples may be prepared in parallels.
- Solid-phase extraction (SPE)
- Higher recoveries, no problems with emulsions, less solvent consumption and a smaller sample volume requirement.
- Sample treatment with high speed and feasibility for treatment of numerous samples at one time is possible.

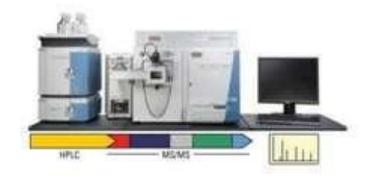
Metabolite identification

Full scan Precursor ion and constant neutral loss scan Product ion scan MRM

Metabolite Determination

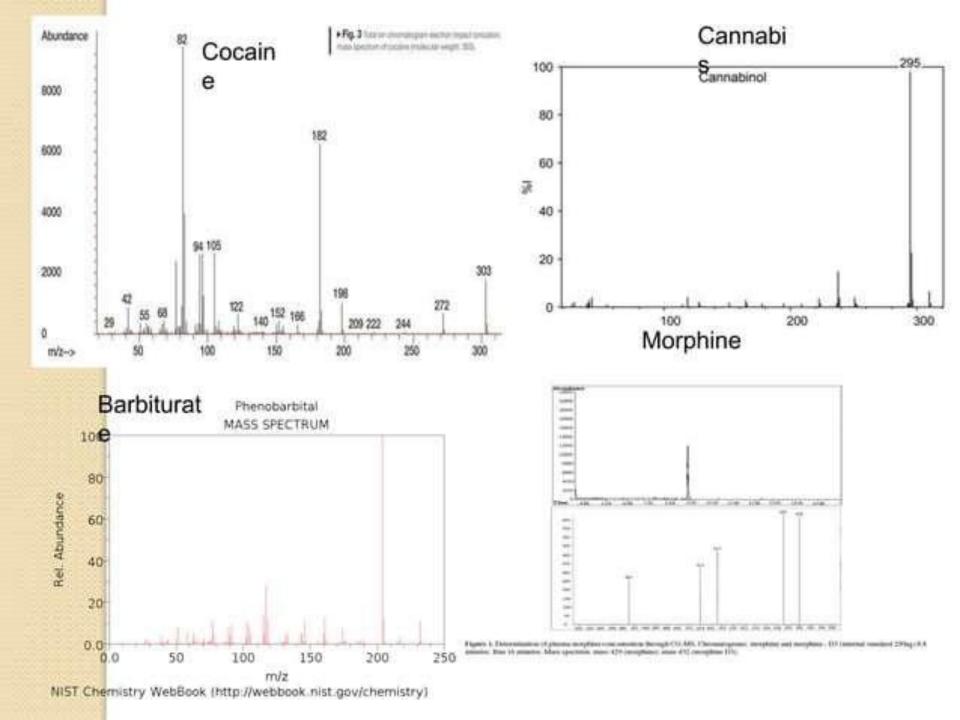
- LC-MS/MS
- Reversed phase chromatography
- Reversed phase chromatography is most widely used technique in analysis of drugs and their metabolites due to its extensive application to most small molecules which are separated by their degree of hydrophobic interaction with the stationary phase.
- An increased polarity of the metabolite decreased retention on the stationary phase.
- For polar metabolites short chain bonded phases, such as C₈, phenyl or cyano are more appropriate. Add ion-paring reagent into mobile phase.
- Ultra-high performance liquid chromatography (UHPLC)
- For fast analyses using sub-2µm particle column dimensions are typically 50x2 mm. An additional benefit of UHPLC is the low consumption of mobile phase, where it saves at least 80% compared to HPLC.
- Advantages as enhanced separation efficiency, short analysis time and high detection sensitivity make UHPLC coupled with MS/MS an even more powerful analytical support in pharmacokinetic studies.


- The GC-MS analysis of polar compounds, such as metabolites, from biological matrices requires analytes extraction into a volatile organic solvent.
- time-consuming sample preparation including derivatization to become stable, volatile and amenable to the ionization technique.


Capillary electrophoresis (CE)


- CE in many instances can have distinct advantages over HPLC in terms of simplicity, rapid method development, solvent saving and minimal sample requirement [10-30 nL injected] making this technique very interesting for rapid and practical analyses in the biomedical field.
- But have less sensitivity.

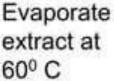
Mass spectrometry


- Separate ion according to m/z ratio.
- Currently, the QQQ using single or multiple reaction monitoring is most often used for quantitative analysis of metabolites.
- SIM suffers from insufficient selectivity in comparison with MRM.
- And also much lower sensitivity.
- IT and TOF analyzers are also used for metabolite determination or use combined with QQQ (Qtrap, Q-TOF).

Thin layer chromatography

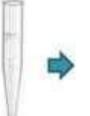
Acid mixture extract A

1 ml of dil HCL - Shake for And 10 ml 5 min CHCl₃



10 ml urine sampl 6

For 10 min Then lower organic layer to tapered glass tube


Basic mixture extract

2 ml NH₄CI and

Shake for 5 min

0.5 ml methanolic HCL

10 ml urine sampl

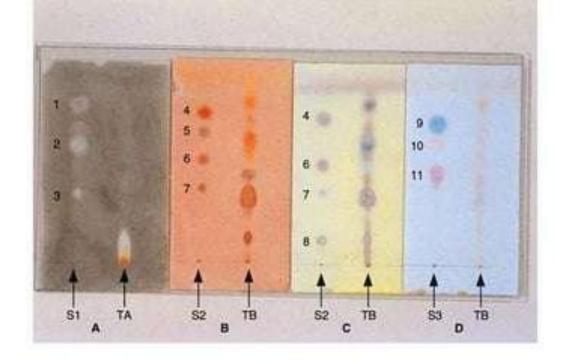
e

10ml CHCI3: propan-2-01

For 10 min

Then lower organic layer to tapered glass tube

- 3. Purification of extracts of stomach contents
 - (a) Prior to the solvent evaporation stage, add 5 ml of aqueous sodium hydroxide solution to extract A, and 5 ml of aqueous hydrochloric acid to extract B.
 - (b) Shake on a mechanical shaker for 5 minutes, centrifuge in a bench centrifuge for 10 minutes and discard both organic layers.
 - (c) Add 5 ml of aqueous hydrochloric acid to the aqueous residue from extract A, and 5 ml of ammonium chloride buffer to the aqueous residue from extract B, and re-extract into chloroform or chloroform: propan-2-ol as in methods 1 and 2 above.


Acid	100	Acidic	Basic	Basic	Basic	Basic	Pheno-	thanic
drug		sample	drugs	sample	drugs	sample	thiazine	nample
mixtu		extract	misture	extract	misture	extract	mixture	extract
(10)		(25 µl)	(10 µl)	(25 pt)	(10 µl)	(25 jd)	(10 µl)	(25 µt)
0		0	0	0	0	-0	-0-	0

Standards

All 1 g/l in chloroform:

- 1. Acidic drugs mixture (amobarbital, melenamic acid, phenobarbital, theophyline).
- Basic drugs mixture (amitriptyline, codeine, nicotine, nortriptyline).
- 3. Phenothiazine mixture (perphenazine, trifluoperazine, thioridazine).

TLC visualization reagent-Mercurous nitrate Acidified indoplatinate FPN reagent Marquis reagent

Codeine and TLC visualization reagentmethadone

A Mercurous nitrate

B Acidified

indoplatinate C Mandelin reagent

D Sulfuric acid

- Amobarbital
- 2 Phenobarbital
- 3 Theophylline
- 4 Amitriptyline
- 5 Nicotine
- 6 Nortriptyline
- 7 Codeine
- 8 Mefanamic acid
- Thioridazine
- 10 Trifluroperazine
- 11 perphenazine

Analysis of stomach content

Clinical interpretation Arsenic

Acute poising of Arsenic causes abdominal pain, vomiting, bloody diarrhoea, massive haemolysis.

Mercury

Mercury vapors cause stomatitis, increased salivation, metallic taste, diarrhoea, pneumonitis, renal failure.

Mercury salts may cause gastric pain, vomiting.

Reinsch Test

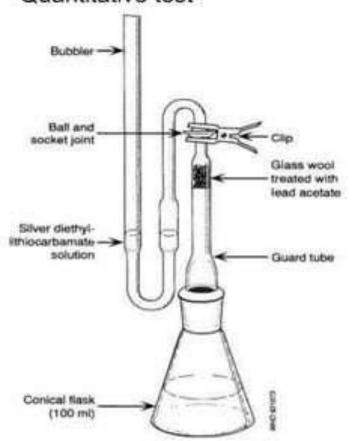
Qualitative test

Rinse the Cu with D.W.

Fume cupboard

Cu mesh clean in HNO₃

Add 10 ml conc. HCl and 20 ml test solution


Cool and wash with D.W.

Results Dull black-Arsenic Silvery- Mercury

Modified Gutzeit apparatus

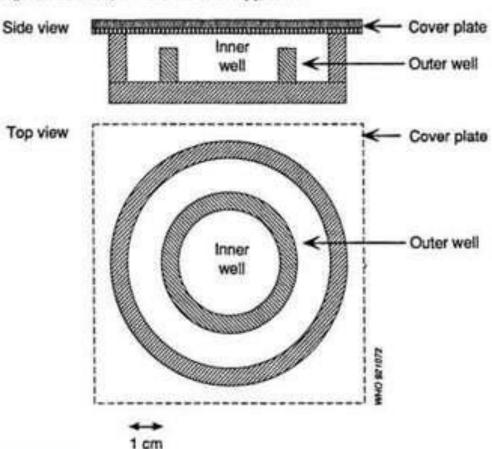
Quantitative test

Clean and dry with acetone Glass wool treated with Pb acetate Add 3 ml silver diethyldithiocarbamate Into bubbler Add 2 g KI and 50 ml sample and swirl until dissolved. Then add 2 ml SnCl₂ and 10 ml conc. HCl Add 10g granular zinc and quickly connect with bubbler. Kept for 45 min at RT. Absorbance of sol at 540 nm against blank and calculate arsenic concentration by previously prepared calibration graph.

Cyanide

Qualitative test

- Dissolve 1ml of sample in 2 ml NaOH. Add 2 ml ferrous sulphate and add sufficient HCl to dissolve ferrous hydroxide precipitate.
- Blue color indicates presence of cyanide.


Quantitative test

Method

Take three microdiffusion cells and add to each of the centre wells

- 1 0.5 ml of p-nitrobenzaldehyde solution
- 2 0.5 ml of o-dinitrobenzene solution
- 3 0.5 ml of sodium hydroxide solution

Fig. 1. Conway microdiffusion apparatus

- 2. To the outer wells add 0.1 ml of:
 - purified water (cell 1):
 - potassium cyanide solution (cell 2):
 - test blood specimen (cell 3).
- To each outer well add 0.3 ml of purified water and, on the opposite side of the outer well. 1.0 ml of dilute sulfacic acid.
- Seal each well using silicone grease, and carefully mix the components of the outer wells.
- Incubate at room temperature for 20 minutes and then add 1 ml of aqueous methanol (1:1) to the centre wells.
- Transfer the contents of the centre wells to 5.0-ml volumetric flasks and make up to volume with aqueous methanol (1:1).

Roubs

The red coloration obtained with cyanide-containing solutions is stable for about 15 minutes. Measure the absorbance of the solutions from cells 2 and 3 at 560 nm against the purified water blank (cell 1.

Assess the cyanide ion concentration in the sample by comparison with the reading obtained from the standard.

Sensitivity

Cyanide, 0.5 mg/L

Clinical interpretation

Causes ataxia, headache, anaxiety, confusion, coma, metabolic acidosis, collapse, respiratory arrest.

Carbamate pesticide

$$R_1$$

Clinical interpretation

Exposure to carbamates may cause anorexia, abdominal pain, nausea, vomiting, diarrhoea, lacrimation, increased salivation, sweating, anxiety, ataxia and acute pulmonary oedema. Antidotal therapy with atropine may be indicated, but pralidoxime should not be used.

Expose paper for conc. HCI fumes for 5 min.

Carbamate gives black spot

Organochlorine

Clinical interpretation

Features of poisoning with organochlorine pesticides include vomiting, weakness and numbness of the extremities, apprehension, excitement, diarrhoea and muscular tremor, with convulsions and respiratory depression in severe cases. Treatment is symptomatic and supportive.

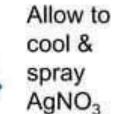
Extract 10 ml of sample with 5 ml petroleum ether

Allow for 5 min . Take upper layer & extract with second 5 ml PE

Combine
ether
extract
& wash
with DW
, NAOH

Spray KMnO₄ & 2amino ethanol

Develop chromatogra m using cyclohexane


Spot the 20 µ1 sample on plate

Reconstitut
e extract in
100 \mu I of
methanol

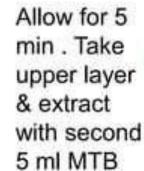


Heat plate at 100°c for 20 min

reagent

 \Rightarrow

Give brown, black spots.


lindane 09 dicophane 26 heptachlor 34 aldrin 41

Organophosphorous

Adjust the ph 7 of 10 ml of sample with NaHCo₃

Extract 10 ml of sample with 5 ml MTB Ether

Ether

Follow

same

procedure

as in OC

Give purple spot

110°C for 30 min

Clinical interpretation-May cause broncorrhoea, Respiratory distress, nausea, muscle weakness, paralysis Spray the plate 4-(p-nitro benzyl)pyridin

dimethoate 11
methidathion 40
malathion 42
dioxathion 47
propetamphos 49
bromophos 54
chlorpyrifos 58

ANALYTICAL TOXICOLOGY REQUEST			Date/time of admission:	
To: [Insert laboratory name, ad-	dress and tel	Date/time of ingestion or exposure:		
Discuss special requirements B	EFORE send	Drugs prescribed or used in treatment.		
Doctor (PLEASE PRINT)				
Telephone/bleep no				
Hospital address for report.			Drugs/poisons claimed or suspected:	
Signed: Date:			k.	
Patient: Other names	2			
Age/date of birth Sex			Clinical details/investigation required/priority	
Consultant: Ward				
Reference no:				
Sample type	Date	Time		
Blood (10 ml heparinized)				
Urine (50 ml; catheter yes/no)				
Stomach contents (50 ml)				

Reference

www.who.int/ipcs/publications/training.../analytical_toxicology.pdf

jat.oxfordjournals.org/

http://dx.doi.org/10.5772/51676

en.wikipedia.org/wiki/Journal_of_Analytical_Toxicology

THANK YOU