Adrenal Function Tests

Adrenal Glands

Suprarenal glands

 Paired organ each weight about 4 grams, pyramidal in shape, located on the top of the kidneys, one on each side at the level of the T12

 It enclosed by fibro elastic connective tissue capsule.

Adrenal Gland

Adrenal glands

- Each gland is divided into two parts:
 - Cortex outer part of gland
 - Part of hypothalamus pituitary adrenal axis
 - Secrete a variety of steroid hormones
 - Medulla inner part of gland, (20% of gland)
 - Part of sympathetic nervous system
 - Secrete catecholamines
 - Both parts are structurally and functionally different

- The large cortical cells are arranged into three layers or zones:
 - zona glomerulosa,
 - zona fasciculata,
 - zona reticularis

- Zona glomerulosa:
 - Produce mineralocorticoids
 - Mainly aldosterone

Hormones that help control the balance of minerals (Na+ and K+) and water in the blood

Aldosterone secretion

- Zona fasciculata:
 - Produce glucocorticoids
 - Mainly cortisol and corticosterone

Hormone that play a major role in glucose metabolism as well as in protein and lipid metabolism

 The secretion of these cells is controled by hypothalamic-pituitary axis via ACTH

Zona reticularis:

 The innermost layer of the adrenal cortex, lying deep to the zona faciculata and superficial to the medulla.

These cells produce androgens

- The androgens produced includes
 - Dehydroepiandrosterone (DHEA)
 - Androstenedione
 - Synthesized from cholesterol
 - DHEA is further converted to DHEAsulfate via a sulfotransferase

The androgens produced are released into the blood stream and taken up in the testis and ovaries to produce testosterone and the estrogens respectively.

Regulation of adrenal gland secretion

Five major classes of steroid hormones derived from cholesterol

Endocrine gland		Hormone	Function	Secretion control is made by
	Cortex	Glucocorticoids	Raises glucose levels in the blood, stimulates glucose production by cells, reduce the inflamatory response	Raised blood glucose levels
le!		Mineralocorticoids	Acts on the distal convoluted tubules of the renal nephrons; regulates uptake of sodium and acid/base balance	Low blood glucose levels
Adrena		Sex hormones	(Very small quantities)	
	Medula	Adrenaline and Noradrenaline	Fear, fight, fright syndrome	Sympathetic nervous system

Disorders of adrenal cortex

 Patient with adrenal disorders can present with features related to:

> HYPOFUNCTION OF THE GLAND

HYPERFUNCTION OF THE GLAND

DISORDERS OF ADRENAL CORTEX

ADRENAL HYPOFUNCTION

Adrenal insufficiency leads to a reduction in the output of adrenal hormones

glucocorticoids and/or mineralocorticoids

- Two types of adrenal insufficiency
 - Primary insufficiency
 - inability of the adrenal glands to produce enough steroid hormones
 - Secondary insufficiency
 - inadequate pituitary or hypothalamic stimulation of the adrenal glands

- Causes
 - Glucocorticoid treatment
 - Autoimmune adrenalitis
 - Tuberculosis
 - Adrenalectomy
 - Adrenal haemorrhage

Common

Congenital causes:

Metabolic failure in hormone production

 Congenital adrenal hyperplasia e.g. 21-hydroxylase deficiency

Addison's disease:

Progressive destruction of entire adrenal cortex,
 This is usually <u>autoimmune</u> based.

Most likely the result of <u>cytotoxic T lymphocytes</u>,

Addison's disease: Clinical features

- · Tiredness, generalized weakness, lethargy
- Anorexia, nausea, vomiting
- Hyponatremia
- Hyperkalemia ,Hypercalcemia
 Dizziness and postural
 hypotension
- Pigmentation
- Loss of body hair

Addison's disease: clinical features

hyperpigmentation

Addison's disease: clinical features

Hyperpigmentation

INVESTIGATIONS (HORMONAL)

Plasma cortisol concentration

- ACTH stimulation test / Synacthen test
- Measurement of plasma ACTH

- CRH stimulation test
- Plasma renin and aldosterone levels

PLASMA ACTI MEASUREMENT

 To differentiate between primary and secondary adrenal failure

- Primary insufficiency ACTH increased
- Secondary insufficiency ACTH decreased

CRH STIMULATION TEST

 To differentiate between secondary adrenal insufficiency due to pituitary or hypothalamic disease.

> Pituitary disease – blunted or nil response Hypothalamic lesions – positive response

PLASMA RENIN AND ALDOSTERONE

- Adrenal insufficiency
 - Low aldosterone level with high renin

Disorders of adrenal cortex

ADRENAL HYPERFUNCTION

- Cushing syndrome : High Cortisol
- Hyperaldosteronism: High aldosterone
- Pheochromocytoma: High catecholamine

Hyperaldosteronism

A medical condition where too much aldosterone is produced by the adrenal glands, which can lead to sodium retention and potassium loss.

Types:

- Primary hyperaldosteronism
- Secondary hyperaldosteronism

Primary hyperaldosteronism

Conn's syndrome

Primary aldosteronism

CONN'S SYNDROME

 Characterized by autonomous excessive production of aldosterone by adrenal glands

- Presents with hypertension, hypokalemia
- and renal K+ wasting

Conn's Syndrome

- Causes:
 - Adrenal adenoma
 - Bilateral hypertrophy of zona glomerulosa cells

Adrenal carcinoma

Secondary aldosteronism

Increased adrenal aldosterone production in response to non-pituitary, extra-adrenal stimuli

Commoner than primary aldosteronism

Secondary aldosteronism

- CCF
- Liver cirrhosis with ascitis
- Nephrotic Syndrome

Conn's syndrome

Clinical features:

- Hypertension: aldosterone induced Na retention
- Muscle weakness: Due to decrease K+
- Muscle paralysis: severe hypokalemia
- tetany and paraesthesia

INVESTIGATION

- Electrolyte & blood gasses:
 - Hypernatremia
 - Hypokalemia
 - Alkalosis: Blood p H > 7.45

Plasma aldosterone: renin activity ratio high

Disorders of adrenal cortex

ADRENAL HYPERFUNCTION

CUSHING'S SYNDROME

- Definition
- Clinical features
- Investigations
 - Screening for Cushing's syndrome
 - Elucidation of the cause of Cushing's syndrome
- Management

CUSHING'S SYNDROME

Adrenal cortex hyperfunction

 Any condition resulting from overproduction of primarily glucocorticoid (cortisol)

 Mineralocorticoid and androgen may also be excessive

Pseudo-Cushing's syndrome

- Appear cushingoid and have some biochemical abnormalities of true Cushing's disease
- Causes
 - Severe depression
 - Alcoholism
 - Obesity
 - Polycystic ovarian syndrome

Etiology

- Excessive cortisol (ACTH dependent)~75%
 - Pituitary disease
 - Ectopic ACTH syndrome
 - Malignancy (bronchus, thymus, pancreas, ovary)
 - Ectopic CRH syndrome
 - Exogenous ACTH administration

ACTH dependent causes

ACTH secretion increased

pituitary insensitive to feedback by normal levels of cortisol

higher levels of cortisol required to produce negative feedback effect on ACTH secretion

ACTH dependent causes

d. Ectopic ACTH secretion

high level of ACTH secreted by tumour stimulates excessive cortisol production

secretion of ACTH by pituitary inhibited

^{*}Hypersecretion of ACTH and Cortisol is greater in ectopic ACTH syndrome than Cushing Disease

Etiology

- Excessive cortisol (ACTH independent) ~25%
 - Adrenal tumour
 - Adenoma
 - carcinoma
 - Nodular hyperplasia
 - Exogenous glucocorticoid administration

ACTH independent causes

Etiology

- Excess cortisol binding globulin
 - Estrogen therapy : Osteoporosis, OCP
 - Pregnancy

Clinical features

 Truncal obesity with deposition of adipose tissue in characteristic site (moon face, buffalo hump)

— exact mechanism unknown

- Thinning of skin catabolic response
- Purple striae catabolic response
- Excessive bruising catabolic response

Cont..

- Hirsutism (esp adrenal carcinoma) ↑ adrenal androgen
- Menstrual irregularities ↑ adrenal androgen

 Skin pigmentation (ACTH↑) – melanocyte stimulating activity

Cont..

- Hypertension mineralocorticoid effect → sodium retention
 - metabolic alkalosis
- Glucose intolerance ↑ hepatic gluconeogenesis and insulin resistance

Muscle weakness and wasting

Cont...

Back pain

Psychiatric disturbances

There are two diagnostic steps in the investigation of patient suspected of having Cushing's syndrome

Screening test

for identification of Cushing's syndrome. the demonstration of high plasma cortisol level

Identification of cause

1. Demonstration of increased cortisol

- Assessment of circadian rhythm in cortisol secretion
- 24-Hour urinary free cortisol excretion
- Overnight / low dose dexamethasone suppression test

- Assessment of circadian rhythm in cortisol secretion.
- Measure 8 am and 11 pm serum cortisol level
 - Normal : Serum value at midnight is 50% less than value at 8 am
 - Cushing's syndrome : rhythm is lost
 - Pseudo-Cushing : normal circadian.

2. Measuring 24-hour urinary free cortisol

> 100 microgram Diagnostic of Cushing's syndrome

3. Low dose Dexamethasone suppression test:

After injection of dexamethasone urinary and plasma cortisol levels should fall But in cushing's syndrome there is no fall in cortisol levels

- High dose Dexamethasone suppression test
- Normal individuals suppress plasma cortisol
- Patients with Cushing's syndrome fail to show complete suppression of plasma cortisol levels.
 This test is highly sensitive

2. Elucidation of the cause

Plasma ACTH

- Low adrenal causes
- Elevated
 - · Slight pituitary dependent Cushing's
 - Gross ectopic secretion of ACTH

Elucidation of the cause

CRH Test

 Differentiate ectopic ACTH secretion and Cushing's disease.

- Cushing's disease plasma ACTH increases 50% over baseline and cortisol increase by 20%
- Ectopic ACTH or adrenal tumour no response

Elucidation of the cause

- Imaging
 - CT scan of adrenal gland

– MRI of pituitary gland:

CT scan/MRI of thorax & abdomen: ectopic ACTH producing tumor

Treatment

- Depend of Cushing's syndrome depends on the etiology:
 - Adrenal adenoma
 - Adrenal Carcinoma resection
 - Cushing's disease
 - Drug (block cortisol synthesis) metyrapone

Phaeochromocytoma

Tumor of adrenal medulla Excessive production of catecholamines Hypertension, hot flushing, sweating, headache

Diagnosis done by urinary VMA estimation: excess tea, coffee, chocolates, ice creams should be avoided before VMA estimation test
Treatment is surgical removal of tumor.

