PRESENTATION TOPIC: INTRODUCTION TO DIAGNOSTIC BACTERIOLOGY

Subject: Systematic Diagnostic Bacteriology

Muhammad Abbas BS MLT F.sc MLT

Rehman College of Allied Health Sciences Peshawar

INTRODUCTION TO DIAGNOSTIC BACTERIOLOGY

- The main function of all diagnostic bacteriology laboratories is the detection and identification of microorganisms in a variety of samples of human, animal, food, industrial, or environmental origin.
- in clinical laboratories, drug susceptibility testing of the isolates to allow correct treatment decisions is of major importance

Diagnosis of Microbial Infection

- · Take the correct specimen
- · Take the specimen correctly
- Label & package the

specimen up correctly

Appropriate transport
 storage of

specimen

Getting the specimen to the lab

- · Problems in delay or inappropriate storage.
- · Delay in diagnosis & treatment lead to:
 - √ pathogens die.
 - √ contaminants overgrow.
- · Blood cultures directly into incubator not refrigerator!
- CSF straight to lab.
- Don't put an entire surgical specimen into formaling But: Send a portion to microbiology in a sterile container.

Collecting the specimen correctly

- · Take an mid-stream urine to:
 - ✓ avoids contamination with normal flora.
- Blood cultures
 - ✓ Avoid contamination with skin organisms
- CSF
 - ✓ Avoid contamination.
 - ✓ Avoid bloody tap.
- Throat swab
 - ✓ Make the patient gag!

Patient Details

- · Name and age
- · Hospital no
- Sex, for female: if she pregnant or lactating
- Address
- Suspected diagnosis
- · Travel history
- Immunization

Identification of specimens

- · Patient details.
- · Type of specimen.
- · Collection date and time.
- · Laboratory no.
- · Test requested.
- · Name of ordering physician.

Normal microbiota

- All body surfaces possess a rich normal bacterial flora, especially the mouth, nose and skin.
 - This can be a nuisance in that
 - ✓It can contaminate specimens.
 - ✓It can cause disease.
 - · This is beneficial in that
 - ✓ It can protect against infection by preventing pathogens colonising epithelial surfaces (colonisation resistance).

<u>NOTE</u>: Removal of the normal flora with antibiotics can cause superinfection, usually with resistant microbes.

Microbiota and humans

Disease can come about in several overlapping ways

- Some bacteria are entirely adapted to the pathogenic way of life in humans. They
 are never part of the normal flora but may cause subclinical infection, e.g. M.
 Tuberculosis.
- Some bacteria which are part of the normal flora acquire extra virulence factors making them pathogenic, e.g. E. coli.
- 3. Some bacteria which are part of the normal flora can cause disease if they gain access to deep tissues by trauma, surgery, lines, e.g. S. epidermidis.
- 4. In immunocompromised patients many free-living bacteria and components of the normal flora can cause disease, especially if introduced into deep tissues, e.g. Acinetobacter.

Specimens & Infection Control

- · Please be considerate to lab staff!!
 - ✓ Label hazardous specimens
- Don't send specimens to the lab without proper packing.
 - ✓ Leaking or blood-stained specimens are not acceptable!!!

Factors limiting usefulness of bacteriological investigations

- Wrong sample for example saliva mixed with sputum.
- Delay in transport / inappropriate storage e.g. CSF.
- · Overgrowth by contaminants e.g. blood cultures.
- Insufficient sample / sampling error e.g. in mycobacterial diseases.
- · Patient has received antibiotics.

Specimen rejection criteria

- · Mismatch information
- · Improper container or temperature
- · Insufficient specimen
- Leaking specimen
- Formalin specimen
- · Dried out swap
- · Late specimen

Physician must be informed about rejection

METHODS OF IDENTIFICATION

There are different methods used in the diagnosis of diseases i-e

- Microscopy
- Culture of bacteria
- Sensitivity tests
- Serological tests
- Molecular detection

1. Microscopy stained preparations

- · Gram-stain.
- Acid-fast stain (Ziehl-Neelsen).
- · Special stains.
- Fluorescence
 - · Direct, e.g. auramine
 - Immunofluorescence

2. Culture of Bacteria

- · Solid media
 - √ Agar plates
 - √For identification
 - √For counting
 - ✓ Slant
 - ✓ For safe long-term culture, e.g. Lowenstein-Jensen media for TB
- · Liquid (broth) media
 - For enrichment or maximum sensitivity

3. Sensitivity tests

- · on solid media
 - ✓ disc diffusion technique
- · in liquid media
 - ✓ minimum inhibitory concentration (MIC) test
- · E-test

4. Serology tests

- · Antigen detection
 - ✓ e.g. latex agglutination
- Antibody detection
 - ✓ e. g. agglutination tests, complement fixation tests, indirect immunofluorescence

5. Molecular methods

✓ Polymerase Chain Reaction (PCR)

Overview of Bacterial infections

Bacterial meningitis

- Streptococcus pneumoniae
- Neisseria meningitidis
- Haemophilus influenzae
- Streptococcus agalactiae
- Listeria monocytogenes

Otitis media

- Streptococcus pneumoniae

Pneumonia

Community-acquired:

- Streptococcus pneumoniae
- Haemophilus influenzae
- Staphylococcus aureus

Atypical:

- Mycoplasma pneumoniae
- Chlamydia pneumoniae
- Legionella pneumophila
- Tuberculosis
- Mycobacterium tuberculosis

Skin infections

- Staphylococcus aureus
- Streptococcus pyogenes
- Pseudomonas aeruginosa

Eye infections

- Staphylococcus aureus
- Neisseria gonorrhoeae
- Chlamydia trachomatis

Sinusitis

- Streptococcus pneumoniae
- Haemophilus influenzae

Upper respiratory tract infection

- Streptococcus pyogenes
- Haemophilus influenzae

Gastritis

- Helicobacter pylori

Food poisoning

- Campylobacter jejuni
- Salmonella
- Shigella
- Clostridium
- Staphylococcus aureus
- Escherichia coli

Urinary tract infections

- Escherichia coli
- Other Enterobacteriaceae
- Staphylococcus saprophyticus
- Pseudomonas aeruginosa

Sexually transmitted diseases

- Chlamydia trachomatis
- Neisseria gonorrhoeae
 Treponema pallidum
- Ureaplasma urealyticum
- Haemophilus ducreyi

