

DR. NILESH KATE (M.D.)

ASSOCIATE PROFESSOR ESIC MEDICAL COLLEGE, GULBARGA.

Objectives.

- Concept of Acid & base.
- pH and H ion concentration.
- Handerson-Hasselbalch equation.
- Mechanisms to maintain acid base balance.
- Applied aspects.

ACIDS

- Acids are the substances which can donate H+ ion (proton).
- These are hydrogen containing substances which can dissociate in soln. to release H+.

HCl

H+ + Cl

- □Not all hydrogen containing substances are acids; e.g. Carbohydrate.
- Tightly bound hydrogen; not liberated in solution.

ACIDS

- Types of acids in the body:
- 1. Volatile Acids:
 - Can leave the solution and enter the environment.
 - *H2CO3 is the only volatile acid in the body.

H2CO3 + CO2

2. Non-Volatile Acids (Fixed Acids/Metabolic

Acids):

- *Acids that do not leave the solution.
- All other acids in the body.
- Ex: Pyruvic acid, Lactic acid, Phosphoric acid

ACIDS

- Physiologically important acids:
 - Carbonic acid (H₂CO₃)
 - Phosphoric acid (H₃PO₄)
 - Pyruvic acid (C₃H₄O₃)
 - Lactic acid (C₃H₆O₃)
- These acids are products of various metabolisms in the body.
- Dissolved in body fluids.

BASE

Base is a substance which can accept H+ ion (proton).,e.g. Hydroxyl ion (OH-).

$$OH^- + H^+ \longrightarrow H20$$

- Physiologically important bases:
 - Bicarbonate (HCO;)
 - Biphosphate (HPO_i²)

Alkali

- Used synonymously with base.
- Molecule formed by combination of an alkaline metal (Na,K,Li) with a highly basic ion.
 - Ex- NaOH, KOH, NaHPO4
- Base portion of these molecules react quickly with H⁺ to remove these from solution, i.e. alkalis act as typical bases.

NaOH
$$\longrightarrow$$
 Na⁺ + OH⁻

Lithium

Sodium

Potassium

Rubidium

Cesium

Francium

Acids & Bases can be classified as strong or weak acid/base

- Strong acid/base:
 - One that dissociates completely in a solution.
 - Ex: HCl, H2SO4, NaOH

$$HCl \longrightarrow H^+ + Cl^ NaOH \longrightarrow Na^+ + OH^-$$

- Weak acid/base:
 - One that dissociates partially in a solution.
 - Ex: H2CO3, H+ + HCO3-

PH SCALE

 $^{\square}$ H $^{+}$ concentration in extracellular fluid (ECF) $4 \times 10^{-8} (0.00000004)$

```
pH = log 1 / H^+ concentration
```

- Normal blood pH is 7.35 7.45
- pH range compatible with life is 6.8 8.0

PH SCALE $pH = - log [H^{\dagger}]$ $pH = log 1/[H^{\dagger}]$ pH is inversely related to H concentration. low pH - indicates high H' concentration. high pH - indicates low H⁺ concentration. pH = 4 has 10 times more free H⁺ concentration than pH = 5 and 100 times more free H $^{+}$ concentration than pH = 6pH range from 1-14. pH < 7 - Acidic pH>7_Basic pH = 7 - Neutral

EFFECTS OF pH change

- pH changes have dramatic effects on normal cell function
 - 1) Changes in excitability of nerve and muscle cells
 - 2) Influences enzyme activity
 - 3) Influences K⁺ levels

Changes in cell excitability

- pH decrease (more acidic) depresses the central nervous system
 - Can lead to loss of consciousness
- pH increase (more basic) can cause over-excitability
 - Tingling sensations, nervousness, muscle twitches

Influences on enzyme activity

- pH increases or decreases can alter the shape of the enzyme rendering it non-functional
- Changes in enzyme structure can result in accelerated or depressed metabolic actions within the cell

INFLUENCES ON K[±] LEVELS

In kidney Na⁺ is absorbed in tubules in exchange of K⁺ or H⁺ (K⁺ > H⁺).

In acidosis more H⁺is secreted thus preserving the K⁺, causing hyperkalemia.

- Maintenance of the pH of body fluids at a level that
- allow optimal function.
- pH maintenance means maintaining [H⁺].
- This involves two important ions which are regulated by various chemical & physiological process:

- Chemical processes:
 - The first line of defence to an acid or base load.
 - Include the extracellular and intracellular buffers.

Physiologic processes:

- 1. Changes in cellular metabolism.
 - 2. Excretion of volatile acids by the lungs
 - 3. Excretion of fixed acids by the kidneys

- Maintained by <u>three</u> mechanisms:
 - 1) Chemical Buffers
 - React very rapidly (less than a second)
 - 2) Respiratory Regulation
 - Reacts rapidly (seconds to minutes)
 - 3) Renal Regulation
 - Reacts slowly (minutes to hours)

1) Buffer Systems

2) Respiratory Responses3) Renal Responses4) Intracellular Shifts of Ions

Buffers.

- Is a solution of weak acid & its salt with a strong base that prevent change in pH when H⁺ ions are added or removed from the solution.
- Most effective within 1 pH unit of the pK of the buffer.
- Depend on absolute concentration of salt & acid.

REMEMBER.....

Buffer cannot remove H+ ions from the body temporarily reduce free H+ ions

H+ ions have to be ultimately removed by the renal mechanism.

Henderson-Hasselbalch equation

- When acid is added, --- H+ ion conc increases, reaction forced towards right leads to increase in un dissociated molecules.
- When base is added ---- reaction shift towards left, more H+ ion released from buffer to combine with base.

Most Effective Buffer.

- Henderson-Hasselbalch equation.
- By the law of mass action, at equilibrium

Henderson- Hasselbalch equation.

- [H+] = K [HA]/[A-]
- pH = log 1/ [H+]
- Log 1/[H+] = log 1/K +log [A-]/[HA]
- pH = pK + log [A-]/[HA]
- Thus pH= pK
- Thus most effective buffers in the body are those with pK close to the pH in which they operate.
 - from this equation it is seen that buffering capacity of buffer system is greatest when amount of anion[A-] and undissociated acid [HA] is same.

BICARBONATE BUFFER SYSTEM

Predominates in extracellular fluid (ECF)

$$HCO_3^+$$
 added H^+ \longrightarrow H_2CO_3

BICARBONATE BUFFER SYSTEM

Hydrogen ions <u>generated</u> by metabolism or by <u>ingestion</u> react with bicarbonate base to form more carbonic acid.

$$HCO_3^+ + H^+ \longrightarrow H_2^2CO_3$$

BICARBONATE BUFFER SYSTEM

Hydrogen ions that are **lost** (vomiting) causes carbonic acid to dissociate yielding replacement H⁺ and bicarbonate.

CARBONATE BUFFER SY

This system is most important because the concentration of both components can be regulated:

- Carbonic acid by the respiratory system
- Bicarbonate by the renal system

$$CO_2 + H_2O \Longrightarrow H_2CO_3 \Longrightarrow H^+ + HCO_3$$

Addition of lactic acid

Exercise

Loss of HCl

Vomiting

PHOSPHATE BUFFER SYSTEM

Most important in the intracellular system

$$Na_2HPO_4 + H^+ \longrightarrow NaH_2PO_4 + Na^+$$

+Na,HPO4 NaH,PO, +Na+

PROTEIN BUFFER SYSTEM

- Most important intracellular buffer.
- The most abundant buffer of the body.
- Behaves as a buffer in both plasma and cells
- Hemoglobin is by far the most important protein buffer.

PROTEIN BUFFER SYSTEM

- H⁺ generated at the tissue level from the dissociation of H₂CO₃ produced by the addition of CO₂
- Bound H⁺ to Hb (Hemoglobin) does not contribute to the acidity of blood.

PROTEIN BUFFER SYSTEM

- As $\mathbf{H}^{t}\mathbf{H}\mathbf{b}$ picks up \mathbf{O}_{2} from the lungs the $\mathbf{H}\mathbf{b}$ which has a higher affinity for \mathbf{O}_{2} releases \mathbf{H}^{t} and picks up \mathbf{O}_{2}
- Liberated H⁺ from H₂O combines with HCO₃⁻

1) Buffer Systems 2) Respiratory Responses 3) Renal Responses 4) Intracellular Shifts of Ions

RESPIRATORY REGULATION

- Respiratory regulation is by increasing or decreasing the exhalation of CO2 from the body.
 - <u>Hyperventilation</u> in response to increased CO₂ or H⁺(low pH)
 - <u>Hypoventilation</u> in response to decreased CO₂ or H⁺(high pH)

RESPIRATORY REGULATION

- Respiratory center in brain is able to detect blood concentration levels of CO, and H⁺
- Increases in CO₂ and H⁺ stimulate the respiratory center → ↑ RR
- But the effect diminishes in 1 - 2 minutes

Buffer Systems Respiratory Responses Renal Responses Intracellular Shifts of Ions

- The kidney compensates for Acid Base imbalance within 24 hours and is responsible for long term control.
- The kidney in response:
 - To Acidosis
 - Retains bicarbonate ions and eliminates hydrogen ions. Produce new bicarbonate.
 - To Alkalosis
 - Eliminates bicarbonate ions and retains hydrogen ions.

- Large amount of HCO₃ filtered & H⁺ secreted by kidneys.
- Almost all (99%) HCO₃ is absorbed by combining it with H₁.
- H⁺ secreted = H⁺ needed to absorb all HCO₃⁻ + excess H⁺ formed in body.
- If filtered HCO₃ > secreted H⁺ → net loss of base from blood.
- If filtered HCO₃: < secreted H⁺ → net loss of acid from blood.

- Alkalosis ($\downarrow H$ ·) → \downarrow absorption of HCO₃· → HCO₃· exc. In urine.
- Acidosis (↑ H·)→ all HCO; is absorbed & kidneys produce new HCO;
- So kidneys regulate extracellular fluid H+ concentration through three fundamental mechanisms:
- (1) secretion of H+,
- (2) reabsorption of filtered HCO3-, and
- (3) production of new HCO3-.

Secretion of H+ occurs in all segments of nephron.

Secreted H+ is buffered with:

- HCO; in proximal segments → resulting in absorption of HCO3-
- Na₂HPO₄ & NH₃ in distal segments → resulting in production of new HCO3-

HCO3- absorption in proximal segment

Disorders of Acid-Base Balance

- Acidosis:
 - ↓ pH of ECF.
 - May be d/t ↑ acid / ↓ base.
- May be:
 - Respiratory Acidosis
 - d/t ↓ elimination of CO2 by lungs. (↑ acid)
 - Metabolic Acidosis:
 - d/t ↑ loss of HCO3- by the kidneys. (↓ base)

Disorders of Acid-Base Balance

- Alkalosis:
 - ↑ pH of ECF.
 - May be d/t ↑ base /↓ acid.
- May be:
 - Respiratory Alkalosis
 - d/t ↑ elimination of CO2 by lungs. (↓ acid)
 - Metabolic Alkalosis:
 - d/t ↓ loss of HCO3- by the kidneys. (↑ base)

Acid-Base Balance Abnormalities

I. Respiratory

Acidosis

- High pCO₂, low pH
- Pneumonia, cystic fibrosis, etc
- Kidneys

Retain bicarbonate

Alkalosis

- Low pCO₂, high pH
- Hyperventilation
 - Kidneys

Secrete bicarbonate

Kidneys compensate for the problem

Acid-Base Balance Abnormalities

II. Metabolic

Acidosis

- Low bicarbonate
- Low pH
- Too much alcohol
- Excessive loss of bicarbonate (diarrhea)
- Hyperventilation

Alkalosis

- High bicarbonate
- High pH
- Vomiting
- Excessive base intake

Hypoventilation

Lungs compensate for metabolism

Diagnosing Acid-Base imbalance

Remember 3 important values:

$$pH = 7.4$$

pCO2 = 40 mm Hg

HCO3 - = 24 mmol/l

Today's thought.

"Too many people spend
money they haven't earned,
to buy things they
don't want,
to impress people they
don't like."

- Will Smith -