CALCIUM METABOLISM

PRESENTER DR PASHI V.M MODERATOR DR MUNTHALI. J 15/01/2015

contents

- Overview about calcium
- Regulatory mechanisms
- Hormones involved in calcium homeostasis
- Calcium and bones
- Other related hormones
- Disorders of calcium metabolism

OVERVIEW ABOUT CALCIUM

 about 99% of Ca in our bodies is found in bones. The concentration of Ca in plasma is higher than in the interstitial fluid, intracellular concentration of Ca is considerably less.

Interactions

- Phosphate: ↓ calcium excretion in the urine
- Caffeine:
 \(\backslash \) urinary and fecal excretion of calcium
- Sodium: 个 sodium intake, 个 loss of calcium in urine
- Iron: calcium might have inhibitory effect on iron absorption

Storage of Calcium

- The primary site of storage is our bones (about 1000 grams).
- Some calcium is stored within cells (endoplasmic reticulum and mitochondria).
- Bone is produced by <u>osteoblast</u> cells which produce collagen, which is then mineralized by calcium and phosphate (hydroxyapatite).
- Bone is remineralized (broken down) by osteoclasts, which secrete acid, causing the release of calcium and phosphate into the bloodstream.
- There is constant exchange of calcium between bone and blood.

Excretion of Calcium

- The major site of Ca excretion in the body is the kidneys.
- The rate of Ca loss and reabsorption at the kidney can be regulated.
- Regulation of absorption, storage, and excretion of Ca results in maintenance of calcium homeostasis.

Calcium functions

- Major structural element in the vertebrate skeleton (bones and teeth) in the form of calcium phosphate (Ca₁₀(PO₄)₆(OH)₂ known as hydroxyapatatite
- Key component in the maintenance of the cell structure
- Membrane rigidity, permeability and viscosity are partly dependent on local calcium concs

Calcium functions (Bone)

- Osteoclasts (bone cells) remodel the bone by dissolving or resorbing bone
- Osteoblasts (bone forming cells) synthesize new bone to replace the resorbed bone
- Found on the outer surfaces of the bones and in the bone cavities

Calcium functions

Plays important regulatory roles in the body

A passive role:

- As a cofactor for many enzymes (e.g. Lipase) and proteins
- As component in the blood clotting cascade

An active role: as an intracellular signal

- In the relaxation and constriction of blood vessels
- In cell aggregation and movement
- In muscle protein degradation
- In secretion of hormones as insulin
- In cell division
- In nerve impulse transmission

Regulation of [Calcium]

- The important role that calcium plays in so many processes dictates that its concentration, both extracellularly and intracellularly, be maintained within a very narrow range.
- This is achieved by an elaborate system of controls

Regulation of Intracellular [Calcium]

- Control of cellular Ca homeostasis is as carefully maintained as in extracellular fluids
- [Ca²⁺]_{cyt} is approximately 1/1000th of extracellular concentration
- Stored in mitochondria and ER
- "pump-leak" transport systems control [Ca²⁺]_{cyt}

Extracellular Calcium

- When extracellular calcium falls below normal, the nervous system becomes progressively more excitable because of increase permeability of neuronal membranes to sodium.
- Binding of calcium to albumin is pH dependent
- Acute alkalosis increases calcium binding to protein and decreases ionized calcium

Three Forms of Circulating Ca²⁺

Regulation of Calcium Metabolism

- Minerals; serum concentration
 - Calcium (Ca²⁺); 2.2-2.6 mM (total)
 - Phosphate (HPO₄²⁻); 0.7-1.4 mM
 - Magnesium (Mg²⁺); 0.8-1.2 mM
- Organ systems that play an import role in Ca²⁺ metabolism
 - Skeleton
 - Gl tract
 - Kidney
- Calcitropic Hormones
 - Parathyroid hormone (PTH)
 - Calcitonin (CT)
 - Vitamin D (1,25 dihydroxycholecalciferol)
 - Parathyroid hormone related protein (PTHrP)

small intestine

Calcium cycling in bone tissue

- Bone formation
 - Osteoblasts
 - Synthesize a collagen matrix that holds Calcium Phospate in crystallized form
 - Once surrounded by bone, become osteocyte

Bone resorption

 Change local pH, causing Ca++ and phosphate to dissolve from crystals into extracellular fluids

small intestine

Calcitonin

- The major stimulus of calcitonin secretion is a rise in plasma Ca²⁺ levels
- Calcitonin is a physiological antagonist to PTH with regard to Ca²⁺ homeostasis

Calcitonin

- Calcitonin acts to decrease plasma Ca²⁺ levels.
- While PTH and vitamin D act to increase plasma Ca²⁺-- only calcitonin causes a decrease in plasma Ca²⁺.
- Promotes deposition of Ca++ into bone (inhibits osteoclasts)
- Calcitonin is synthesized and secreted by the parafollicular cells of the thyroid gland.

Calcitonin (CT)

Actions of Calcitonin

May be more important in regulating bone remodeling than in Ca2+ homeostasis.

Used in treatment of hypercalcemia

Hormonal Regulators

- Calcitonin (CT)
 - Lowers Ca++ in the blood
 - Inhibits osteoclasts
- Parathormone (PTH)
- 1,25 Vitamin D3

Parathyroid Hormone

- PTH is synthesized and secreted by the parathyroid gland which lie posterior to the thyroid glands.
- The Chief Cells in the parathyroid gland are the principal site of PTH synthesis.
- It is THE MAJOR of Ca homeostasis in humans.

(PTH)

- Increases Ca++ in blood
- Increases Ca++ resorption from the bone
 - Stimulates osteoclasts
 - Increases number of osteoclasts
- Increases Ca++ reabsorption from nephron
- Control of secretion:
- Necessary for fine control of Ca++ plasma levels

Regulation of PTH

- The dominant regulator of PTH is plasma Ca²⁺.
- Secretion of PTH is inversely related to [Ca²⁺].
- Maximum secretion of PTH occurs at plasma Ca²⁺ below 3.5 mg/dL.
- At Ca²⁺ above 5.5 mg/dL, PTH secretion is maximally inhibited.

Regulation of PTH

- When Ca²⁺ falls, cAMP rises and PTH is secreted.
- 1,25-(OH)₂-D inhibits PTH gene expression, providing another level of feedback control of PTH.
- Despite close connection between Ca²⁺ and PO₄, no direct control of PTH is exerted by phosphate levels.

Hormonal Regulators

- Calcitonin (CT)
 - Lowers Ca++ in the blood
 - Inhibits osteoclasts
- Parathormone (PTH)
 - Increases Ca++ in the blood
 - Stimulates osteoclasts
- 1,25 Vitamin D3

1,25 Vitamin D3

- Increases Ca++ uptake from the gut
 - Increase transcription and translation of Ca++ transport proteins in gut epithelium
- Minor roll: also stimulates osteoclasts
 - Increase Ca++ resorption from the bone

1,25 Vitamin D3

Synthesis of Vitamin D

- Humans acquire vitamin D from two sources.
- Vitamin D is produced in the skin by ultraviolet radiation and ingested in the diet.
- Vitamin D is not a classic hormone because it is not produced and secreted by an endocrine "gland." Nor is it a true "vitamin" since it can be synthesized de novo.
- Vitamin D is a true hormone that acts on distant target cells to evoke responses after binding to high affinity receptors

Regulation of Vitamin D by PTH and Phosphate Levels

Vitamin D action

- The main action of 1,25-(OH)₂-D is to stimulate absorption of Ca²⁺ from the intestine.
- 1,25-(OH)₂-D induces the production of calcium binding proteins which sequester Ca²⁺, buffer high Ca²⁺ concentrations that arise during initial absorption and allow Ca²⁺ to be absorbed against a high Ca²⁺ gradient

Clinical application

Vitamin D-dependent rickets type II

- Mutation in 1,25-(OH)2-D receptor
- Disorder characterized by impaired intestinal calcium absorption
- Results in rickets or osteomalacia despite increased levels of 1,25-(OH)2-D in circulation

Hormonal Regulators

- Calcitonin (CT)
 - Lowers Ca++ in the blood
 - Inhibits osteoclasts
- Parathormone (PTH)
 - Increases Ca++ in the blood
 - Stimulates osteoclasts
- 1,25 Vitamin D3
 - Increases Ca++ in the blood
 - Increase Ca++ uptake from the gut
 - Stimulates osteoclasts

Calcium homeostasis

small intestine

Calcium and Phosphorous

- Ca is tightly regulated with P in the body.
- P is an essential mineral necessary for ATP, cAMP 2nd messenger systems, and other roles

Calcium Turnover

Phosphate Turnover

Calcium, Bones and Osteoporosis

- The total bone mass of humans peaks at 25-35 years of age.
- Men have more bone mass than women.
- A gradual decline occurs in both genders with aging, but women undergo an accelerated loss of bone due to increased resorption during perimenopause.
- Bone resorption exceeds formation.

Age related bone density changes

Calcium, Bones and Osteoporosis

- Reduced bone density and mass: osteoporosis
- Susceptibility to fracture.
- Earlier in life for women than men but eventually both genders succumb.
- Reduced risk:
 - Calcium in the diet
 - habitual exercise
 - avoidance of smoking and alcohol intake
 - avoid drinking carbonated soft drinks

Influences of Growth Hormone

- Normal GH levels are required for skeletal growth.
- GH increases intestinal calcium absorption and renal phosphate resorption.
- Insufficient GH prevents normal bone production.
- Excessive GH results in bone abnormalities (acceleration of bone formation AND resorption).

Influence of Thyroid Hormones

- Thyroid hormones are important in skeletal growth during infancy and childhood (direct effects on osteoblasts).
- Hypothyroidism leads to decreased bone growth.
- Hyperthyroidism can lead to increased bone loss, suppression of PTH, decreased vitamin D metabolism, decreased calcium absorption. Leads to osteoporosis.

DISORDERS OF CALCIUM METABOLISM

- PTH receptor deficiency
- Hyper/hypoparathyroidsm
- Hypercalcemia of malignancy
- Hypercalcemia
- Hypocalcemia

PTH receptor deficiency

- Rare disease known as Jansen's metaphyseal chondrodysplasia
- Characterized by hypercalcemia, hypophosphotemia, short-limbed dwarfism
- Due to activating mutation of PTH receptor
- Rescue of PTH receptor knock-out with targeted expression of "Jansen's transgene"

Hyperparathyroidsm

- Calcium homeostatic loss due to excessive PTH secretion
- Due to excess PTH secreted from adenomatous or hyperplastic parathyroid tissue
- Hypercalcemia results from combined effects of PTHinduced bone resorption, intestinal calcium absorption and renal tubular reabsorption
- Pathophysiology related to both PTH excess and concomitant excessive production of 1,25-(OH)2-D.

Hypoparathyroidsm

- Hypocalcemia occurs when there is inadequate response of the Vitamin D-PTH axis to hypocalcemic stimuli
- Hypocalcemia is often multifactorial
- Hypocalcemia is invariably associated with hypoparathyroidism
- Bihormonal—concomitant decrease in 1,25-(OH)2-D

Hypercalcemia of malignancy

- Underlying cause is generally excessive bone resorption by one of three mechanisms
- 1,25-(OH)2-D synthesis by lymphomas
- Local osteolytic hypercalcemia
 - 20% of all hypercalcemia of malignancy
- Humoral hypercalcemia of malignancy
 - Over-expression of PTH-related protein (PTHrP)

References

- Heaney RP, Reftery K Am J. Clin Nutr 200174:343-7
- Despopoulos, Color Atlas of Physiology © 2003
 Thieme
- Martin A C. Clinical chemistry and metabolic medicine.2006