GENERAL ANAESTHETICS

Presented by:

Akansh Goel M.Pharm (Pharmacology) 1st semester

Contents

□ Introduction ☐ Stages & Phases of anaesthesia Classification □ Pharmacokinetics ■ Pharmacodynamics Techniques of anaesthesia ☐ Complications & Contraindications ■ Drug Interactions Pre-anaesthetics Bibliography

Introduction

- Reversible, Drug-induced loss of sensations and consciousness to stimuli.
 - Depresses the Nervous System
- Anaesthetic state
 - Changes in behaviour or perception.
 - Amnesia, immobility and muscle relaxation, abolition of somatic and autonomic reflexes, analgesia, hypnosis.

Musele

General

Essential Components Of Anaesthesia

- Hypnosis Loss of consciousness
- Reversible loss of sensations
- Amnesia Loss of memory
- Analgesia Loss of perception of pain
- · Immobility Loss of motor reflexes
- Skeletal muscle relaxation
- · Quick acting and rapid eliminated
- No toxic effects Large margin of safety

Properties of ideal anaesthetics

For Patient

Pleasant, non irritating, no after effects, fast recovery

For Surgeon

 Provide - Adequate analgesia, Immobility, muscle relaxation and non inflammable

For Anaesthetist

 Easy administration, cheap, stable, safe, easy to store, long shelf-life

Stages

Loss of pain sensation

Stage of Analgesia

2.

Stage of Delirium

3.

Surgical Anaesthesia

4.

Medullary Paralysis

Ш

Surgical anesthesia

IV

Medullary paralysis and death

Phases

1.

Induction

2.

Maintenance

3.

Recovery

Concentration In plasma

Duration in Hours

Drugs

Gases

- Nitrous oxide
- Entonox
- Xenon

Volatile Liquids

- Chloroform
- Ether
- Halothane
- Enflurane
- Isoflurane
- Desflurane
- Sevoflurane
- Methoxyflurane

Inducing agents

- Thiopentone
- Methohexitone
- Propofol
- Etomidate
- Ketamine (Dissociative)

Benzodiazepines

- Diazepam
- Lorazepam
- Midazolam

Opioids

- Fentanyl
- Remifentail
- Sufentanil
- Alfentanil

Neuroleptic agent

- Droperidol

Pharmacokinetics

- Depth of anaesthesia depends on Potency of the agent (MAC) and Partial Pressure (PP) attained in the brain.
- Induction and recovery depends on rate of change of PP in brain.

Factors affecting PP of anaesthetics in Brain

- 1. PP of anaesthetic in the inspired gas
- 2. Pulmonary ventilation
- Alveolar exchange
- Solubility of anaesthetic in blood –
 Blood: gas partition coefficient
- 5. Solubility in tissues
- Cerebral blood flow

Elimination

- Mostly through lungs in unchanged form.
- Channel of absorption \(\ightharpoonup \) channel of elimination.
- Enter and persists in adipose tissue for long periods high lipid solubility and low blood flow.
- They are not metabolized except Halothane.
- · Second gas effect
- Diffusion hypoxia

Properties of Inhaled Anaesthetics

Minimal Alveolar Concentration (MAC)

 Smaller the MAC value more potent is the anaesthetic and vice versa.

Arteriovenous concentration Gradient(ACG)

 Smaller the ACG value faster will be the onset of action and vice versa.

Blood - Gas partition coefficient

 Smaller the B/G partition coefficient value faster will be the onset of action and vice versa. Rank order of MAC values(%) of different inhalational anaesthetics –

Points to Remember..

Blood solubility	 Rate of Induction
Lipid solubility	– Potency
A/V Gradient	 Rate of Induction
Partial Pressure	- Potency
B/G partition coefficient	ent – Rate of Induction

Pharmacodynamics

No specific receptor has been identified as the locus of general anesthetic action. They -

- Increases the activity of GABA receptors.
- Increases the activity of the glycine receptors.
- Blocks postsynaptic nicotinic currents.
- Inhibit the activity of Glutamate receptors.

Note: The mechanism by which the anesthetics perform these modulatory roles is not understood.

Techniques

Complications

During anaesthesia:

- Respiratory depression
- · Cardiac arrhythmias
- Fall in BP & Aspiration
- Laryngospasm and asphyxia
- · Delirium and convulsion
- Fire and explosion

After anaesthesia:

- Nausea and vomiting
- Persisting sedation
- Pneumonia
- Organ damage liver, kidney
- Nerve palsies
- Cognitive defects

Contraindications

Intake

Like Diabetes, Asthma,

High Blood Pressure

Drug Interactions

- Patients on antihypertensives given general anaesthetics— BP may fall markedly.
- Neuroleptics, opioids, clonidine and monoamine oxidase inhibitors potentiate anaesthetics.
- Halothane sensitizes the heart to Adrenaline.
- Insulin need of a diabetic is increased during GA: switch over to plain insulin even if the patient is on oral hypoglycaemics.

Pre- anaesthetics medication

Defination: It is the term applied to the use of drugs prior to the administration of an anaesthetic agent to make anaesthesia safer and more agreeable to the patient.

Drugs

u	Sedative- antianxiety drugs - Diazepam, Lorazepam	
	Opoids — Morphine, Pethidine	
	Anticholinergics - Atropine, Hyoscine, Glycopyrrolate	
	Neuroleptics - Chlorpromazine, Haloperidol	
	H ₂ - blockers / Proton pump inhibitors - Ranitidine	
	Famotidine, Omeprazole, Pantoprazole	
	Antiemetics - Metoclopramide, Domperidone,	
	Ondansetron	

Open For Discussion.....

Bibliography

- Goodman, L.S., 2011. Goodman and Gilman's the pharmacological basis of therapeutics (pp. 527-547). New York: McGraw-Hill.
- Tripathi, K.D., 2018. Essentials of medical pharmacology. (Pp. 399- 414) Jaypee Brothers Medical Publishers, New Delhi.
- Garg, G.R. and Gupta, S., 2018. Review of pharmacology. (Pp. 294-300) Jaypee Brothers Medical Publishers (p) Limited.
- Harvey, R.A., Clark, M.A., Finkel, R., Rey, J.A. and Whalen, K., 2012. Lippincott's illustrated reviews: Pharmacology Medicine and Science in Sports and Exercise, 538.

Contd..

- https://www.slideshare.net/DeepakKumarGupta2/generalanaesthesia-52366531 accessed on 14/11/18.
- Katzung, B.G. and Trevor, A.J. eds., 2015. Basic & clinical pharmacology (pp. 753-756). New York, NY: McGraw-Hill.
- https://www.slideshare.net/mayur238/general-anaesthesia-46670800 accessed on 17/11/18.
- https://www.slideshare.net/drswarnankparmar/preanaestheticmedication-general-anaesthetics_accessed on 17/11/18.

Thank You