Brachial Plexus Injuries

Clinical Science III Karen R. Voogt, DPT Fall 2011

BRACHIAL PLEXUS INJURIES

- Specifically: Obstetrical Brachial Plexus Injury
- Usually result from forcible extraction of fetus by traction on shoulder in a breech presentation, or from traction and tipping of the head in a shoulder presentation

BRACHIAL PLEXUS INJURIES

- Incidence ranges .5-2/1000 births
- Contributing Factors:
 - Birth weight >3500g
 - Shoulder dystocia
 - Prolonged labor
 - Maternal diabetes
 - Infant sedation
 - Breech delivery

BPI

- Occurrence:
 - 0.1% spontaneous deliveries
 - 1.2% breech presentation
 - 1.3% forceps deliveries

BRACHIAL PLEXUS INJURIES

- May produce lifelong effects:
 - Total body
 - Multifactorial
 - Progressive musculoskeletal impairment
 - Limb length deficits

BRACHIAL PLEXUS INJURIES

May have associated trauma:

- clavicle or humerus fractures
- facial nerve injuries
- shoulder subluxation
- torticollis
- hemi paralysis of the diaphragm with phrenic nerve injury (C4)

BPI: pathology

- May be upper or lower plexus or both
- Roots, trunks, divisions, cords and peripheral nerves can all suffer:
 - Neurotmesis: complete rupture
 - Axonotmesis: disruption of axons while neural sheath remains intact
 - Neurapraxia: temporary nerve conduction block with intact axons

BPI: pathology

- Partial or complete rupture may evolve into a neuroma, mass of fibrous tissue
- Hemorrhage into subarachnoid space
- May have combination of types of lesions
- Transient or permanent

BPI Neuronal Recovery

- Axon regeneration 1 mm per day
 - 4-6 months for upper arm
 - 7-9 months for lower arm
- Recovery is varied according to damage
 - 2 years upper arm
 - 4 years lower arm

Classification

- Mild: stretching of the nerve fibers
- Moderate: stretching and tearing
- Severe: complete rupture with avulsion of roots from spinal cord
- Diaphragmatic and serratus anterior paralysis suggests avulsion

Classification:

- Erb's Palsy, or upper
 - Involvement of the upper brachial plexus and 5th and 6th C-nerve roots (20% more common than lower)
- Klumpke's Palsy or lower
 - Involvement of the lower brachial plexus and 7th and 8th nerve roots
 - Caused by traction on abducted arm

SHOULDER DYSTOCIA

Erb's Palsy

Caused by the forceful separation of head/shoulder

biceps, deltoid, brachialis, brachioradialis, supinator, supra and infraspinatus, subscapularis, teres minor, serratus anterior and rhomboids, long extensors of wrist, fingers and thumb may be involved

Erb's Palsy cont

- Affected arm usually hangs at side with shoulder ADD/ IR and elbow extension, forearm pronation and wrist flexion and finger flexion ("waiter's tip" position)
- Moro, biceps and radial reflexes are absent intact grasp
- May have sensory loss

PROGNOSIS for Erb's Palsy

- Generally good for spontaneous recovery, although may be incomplete
- Depends on degree of involvement
- Majority of spontaneous recovery by 9 months

TREATMENT

- Usually involves rest for 7 10 days (possibly splinting)
 - Positioning/splinting
 - Gentle ROM
 - Stimulation of muscle function
 - Encourage active movement
 - Weight bearing
 - Sensory input

TREATMENT cont.

- Bimanual activities
- Balance reactions
- Taping
- Botox
- Electrical stimulation

LOWER (Klumpke's Palsy)

- Involvement of the lower brachial plexus and
 7th and 8th (T1) C- nerve roots
 - caused by traction on abducted arm
 - Incidence .6-2% of all OBPI

Klumpke's Palsy

- Resting position of forearm supination, paralysis of wrist flexors, extensors, intrinsic muscles of hand (claw- hand deformity)
- Sensory loss of ulnar border of hand/forearm
- T1 involvement
 - may see associated paralysis of sympathetic nerves with a Horner's Syndrome

BOTH (Erb - Klumpke) Total Brachial Plexus Injury

- Infrequent occurrence
- Avulsion of plexus/roots
- Recovery limited after avulsion/rupture
- Loss of sensation
- Surgical indication

Mallet Scale

Surgical Intervention

- Neurosurgery 5-10%OBPI
 - Nerve grafting
 - Neuroma dissection and removal
 - Neurolysis (decompression and removal of scar tissue)
 - Direct end to end anastomosis of nerve ends

Surgical Intervention

- Later surgeries:
 - Soft tissue release
 - Reduction of gleno-humeral joint dislocation
 - Transfer of muscles osteotomies

BPI Impairments of Body Structure and Function

- Abnormal muscle substitutions
- Neglect due to increased function and ease of movement of opposite arm
- Soft tissue contracture
- Scoliosis, pelvic obliquity
- Abnormal bone growth
- Flattening of humeral head, short clavicle
- Positional torticollis

BPI Activity Limitations

- Inability to grasp, reach
- Limited bilateral activities ex-catch, carry
- Decreased ability for ADLs
- Compromised developmental activities/delay
- Decreased balance reactions/protective responses
- Neglect, self –abuse
- Later-shoulder pain, arthritis

Scapular winging, Trumpet sign

BPI Treatment Intervention

BPI Treatment Intervention

Interventions

Interventions

