Cholinergic receptors and their functions \$ clinical application Dr. Umer Sufyan .M Dr.Sri Harsha Rayam #### **HISTORY:** In 1936 Henry Dale and Otto Loewi shared the Nobel prize for their pioneering research on chemical neurotransmission and in particular for the discovery and the functional characterization of the first identified neurotransmitter, acetylcholine The history of this neurotransmitter dated back to the crucial experiments performed by Dale, who identified acetylcholine as responsible of a strong vasodepressor effect Loewi who demonstrated chemical neurotransmission in the frog vagus nerve-heart preparation This 15-year long story found a first conclusion with the demonstration that acetylcholine was actually present in mammalian organs Since then, the history of acetyl-choline in neuroscience has been one of great advancement of our knowledge in many functions of the nervous system as well as in very harmful neuropathologies #### Cholinoceptors Two classes of receptors for Ach are recognized muscarinic and nicotinic; The muscarinic receptor is a G protein coupled receptor, while The Nicotinic receptor is a ligand gated cation channel. Table 7.1: Sites of cholinergic transmission and type of receptor involved | | Site | Type of receptor | Selective agonist | Selective antagonist | |-------------|--|-----------------------------|----------------------------|----------------------| | | All postganglionic parasymp.
Few postganglionic symp. (sweat
glands, some blood vessels) | Muscarinic | Muscarine | Atropine | | 2. a.
b. | parasymp). | Nicotinic (N _N) | DMPP* | He camethonium | | 3. | Skeletal muscles | Nicotinic (N _M) | PTMA** | Curare | | 4. | CNS (cortex, basal ganglia, spinal cord and other sites) | Muscarinic | Muscarine/
Oxotremorine | Atropine | | | | Nicotinic | Carbachol | Curare | ^{*} DMPP—Dimethyl phenyl piperazinium ** PTMA—Phenyl trimethyl ammonium ### Muscarinic receptors | Characteristics | M, (neuronal) | M ₂ (cardiac) | M ₂ (glandular) | |---------------------------|---|--|--| | 1. Location | Neural: Ganglia (autonomic
and enteric), gastric
paracrine cells, CNS
(cortex and hippocampus) | Cardiac: SA node, AV node,
atrium, ventricle; neural:
presynaptic terminals | Exocrine glands,
smooth muscles,
vascular
endothelium | | 2. Function | Gastric acid secretion, GI motility, CNS excitation | SA node: I rate of impulse generation. AV node: I velocity of conduction I contractility; vagal bradycardia | † exocrine
secretions,
smooth muscle
contraction | | 3. Mechanism ² | † IP,, † DAG, † cytoplas-
mic Ca ⁻⁺ , depolarisation | Inhibition of adenylate cyclase (\$\ddot cAMP\$) and opening of K* channels. Inhibits neuronal Ca** channels (presynaptic inhibition of ACh release) | Same as for
M, receptors | | 4. Agonists | M _c NA-343*, oxotremorine | Methacholine | Bethanechol | | 5. Antagonists | Pirenzepine*
Telenzepine* | AF-Dx 116*
Tripitramine* | 4-DAMP
Tolterodine
Darifenacin* | Nicotinic Receptors: | Characteristics | Muscle type (N _n) | Neuronal type (N _H) | In CNS | |-----------------|---|---|--| | 1. Location | At skeletal
neuromuscular
junction (NMJ);
Postsynaptic | At all autonomic ganglia
and at adrenal medulla;
Postsynaptic | At sensory nerve
terminals and in other
parts of brain but mostly
located presynaptically | | 2. Function | Contraction of skeletal muscle | Transmission of impulse
through autonomic ganglia
and firing of postganglionic
neuron, and secretion of NE
& E from adrenal medulla | Presynaptic facilitation of
the release of dopamine
and glutamate | | 3. Mechanism | Ligand gated ion
channel family of
receptors - opening
of cation (Na [*])
channel (end plate
depolarisation) | Same as for N _n receptors | | | 4. Aganists | ACh, Succinyl
choline, PTMA*,
Nicotine | Nicotine, DMPP*
Epibatidine* | | | 5. Antagonists | d-Tubocurarine
α-Bungarotoxin* | Hexamethonium
Trimethaphan* | | #### PARASYMPATHOMIMETICS #### **DIRECTLY ACTING** #### INDIRECTLY ACTING (anticholinesterases) #### 1. Acetylcholine (prototype) #### 2. Synthetic Choline Esters - I) Methacholine - ii) Carbachol - III) Bethanechol #### 3. Natural Alkaloids - i) Muscarine - ii) Nicotine - III) Pilocarpine - iv) Arecoline #### 4. Miscellaneous - i) Tremorine - ii) Oxotremorine - iii) Cevimeline ### Natural Alkaloids Physostigmine REVERSIBLE* #### 2. Quaternary Compounds - i) Edrophonium - ii) Neostigmine - iii) Pyridostigmine - iv) Ambenonium - v) Demecarium - vi) Rivastigmine #### IRREVERSIBLE** #### 1. Organophosphates - i) Isoflurophate (DFP) - ii) Ecothiophate - iii) Paraoxon - lv)Parathion - v) Malathion - vi) Diazinon - 2. Carbamates Propoxur These drugs have short to intermediate duration of action: ** These drugs usually have a longer duration of action. Cholinergic agonists | Class of drug | Drug name | Receptors | Pharamacological approach | ADR | |----------------|-------------|---|---|---| | Choline esters | Ach | | Not used | | | Cholin esters | bethanechol | Mainly
muscarinic-
bladder & GIT
(M3)
-devoid of
nicotinic effects | -Post operative/post
partum non
obstructive urinary
retention &
neurogenic bladder.
-GIT atony | Overdosage-CNS
stimulation,miosis
,spasm of
accommodation for
distance
vision,bronchocons
triction,abd.cramps
, sweating | | Alkaloid | Pilocarpine | Dominant M3
recptors
Mild action at
ganglia(Nn) | -glaucoma.
-prevent/break the
adhesion of iris
with lens or cornea
-sialagogue-
xerostomia | Above n for
systemic-
pul.oedema | ### CHOLINERGIC AGONISTS | Class of drug | Drug name | Receptors | Pharamacological approach | ADR | |---------------|-----------|----------------------|---|------------------------| | Alkaloid | muscarine | Muscarinic receptors | Not used | Mushroom
poisioning | | Alkaloid | arecoline | | No therapeutic use
Tried in demenia to
enhance cognitive
function. | | ### CHOLINERGIC AGONISTS | Class of
drug | Drug name | Receptors | Pharamacological
approach | ADR | |---|---------------|---|---|--| | Anticholinester
ases(reversible | Physostigmine | Mainly
muscarinic(M1 toM3) | - (opthal) glaucoma.
-prevent/break the
adhesion of iris with
lens or cornea
-Belladona posionng | More potent than
pilocarpine-
highly lipid
soluble and toxic
hence rarely used | | Anticholinester
ases(reversible
) | Neostigmine | Mainly at Nm (S.M)&
direct agonistic action
NMJ | Myasthenia gravis, . Postoperative paralytic ileus/ urinary retention. Postoperative decurarization. Cobra Bite | Hypotension,
bronchospasm | ### CHOLINERGIC AGONISTS | Class of
drug | Drug name | Receptors | Pharamacological approach | |-------------------------------------|-------------|---|---| | Anticholinestera
ses(reversible) | Edrophonium | Mainly at Nm &
possess direct
agonistic action at
nicotinic receptor of
NMJ | In the diagnosis of myasthenia gravis Short duration of action-not used | | Anticholinestera
ses(reversible) | Demecarium | Mainly M3 | Long acting miotic-
Glaucoma | #### Irreversible cholinesterase Organophosphorus compounds #### T. Uses: In the eye: for glaucoma **Echothiophate**: 0.06% \checkmark 1 0 T for 1 – 3 weeks. ADR: Ciliary spasm, headache, blurred vision. #### ORGANOPHOSPHORUS (OP) COMPOUND POISOING Symptoms: Muscaninic effects Nicotinic effects CNS effects. ### Muscaninic effects:- salivation,sweating,nausea,vomiting,abdominal cramps Nicotinic effects :- Fasiculations of sk.muscles leading to paralysis CNS effects:- Restlessnes, tremor, convulsions, ataxia, resp.arrest ### Treatment of acute OP Poisoning - 1. Termination of exposure - 2. Airway - 3. Supportive measures. - 4. Specific antidotes - A.. Atropine - B. Cholinesterase reactivaters: Oximes - Pralidoxime (2 PAM): 500 mg / 20 ml - Diacetylmono-oxime (DAM): Crosses BBB - Obidoxime - ADR: Oximes: local irritation, drowsiness, blurred vision, diplopia, tachycardia, hypotension, - High doses of Oximes—NM blockade. ### Nerve gases - Tabun (GA) Garland Schrader discovered 1936 - Sarin (GB) Surfhard Schruder discovered 1937 - 30,000 tons of tabun produced 1942-45 - Soman (GD) <u>Ruthard Katha</u> discovered 1944 - Classes: there are two main classes - 1. G series - 2. V series - G series named because of first developed by german eg: Tabun, Sarin, Soman - V series eg: VX, VG These are mainly used as chemical warfare agents during II world war - UN resolution 687 (april 1991) As chemical weapons they are classified as weapons of mass destruction by UN - Chemical weapons convention (1993) their reproduction and stockpiling were outlawed - Chemical weapons convention officially took effect on april 29 1997 ### Antimuscarinic agents These are the drugs which blocks the actions of Ach especially mediated through muscarinic receptor. | ANTIMUSCARINIC DRUGS* | | | | | | | |-----------------------|---------------------------|-----------------|----------------|--|--|--| | Natural
alkaloids | Semisynthetic derivatives | Synthetic de | rivatives | | | | | ATROPINE | HOMATROPINE and its saits | EUCATROPINE | PROPANTHELINE | | | | | (dl-hyoscyamine) | ATROPINE methionitrate | CYCLOPENTOLATE | DROTAVERINE | | | | | | HYOSCINE methylbromide | TROPICAMIDE | OXYPHENONIUM | | | | | | BENZTROPINE | DICYCLOMINE | GLYCOPYRROLATE | | | | | | IPRATROPIUM bromide | FLAVOXATE | CLIDINIUM | | | | | | TIOTROPIUM bromide | OXYBUTININ | TOLTERODINE | | | | | | | PIRENZEPINE | PIPENZOLATE | | | | | | | TELENZEPINE | VALETHAMATE | | | | | SCOPOLAMINE | | TRIHEXYPHENIDYL | | | | | | (I-hyoscine) | | PROCYCLIDINE | | | | | ### **Atropine** #### HISTORY: - Atropine extracts from the Egyptian tenture were used by Cleopatra in the last century B.C. to dilate her pupils, in the hope that she would appear more alluring. - In the Renaissance, women used the juice of the berries of <u>Atropa</u> <u>helladonne</u> to enlarge the pupils of their eyes, for cosmetic reasons. This practice resumed briefly in the late nineteenth- and early twentieth-century in Paris. - The mydriatic effects of atropine were studied among others by the German chemist Friedlich Ferdinand Runge (1795–1867). - In 1831, the German pharmacist Heinrich F.G. Mein (1799-1864) succeeded in preparing atropine in pure crystalline form. The substance was first synthesized by German chemist **Eichard**Willstanter in 1901 ### EYES (M3 receptor blockade) --mydriatic Mydriatic, prevent adhesion between iris and ant. surface of lens, iritis, iridocyclitis ### **CVS** In heart, M₂ receptor is blocked by atropine in S.A node and A.V node leads to tachycardia. It also blocks muscarinic autoreceptors on vagal nerve endings augmenting ach release, this leads to Predominant bradycardia and finally tachycardia. #### CNS At low doses atropine do not cross BBB. At higher doses it produce CNS stimulant action. Hyoscine produce CNS depressant effect even at low doses. Atropine stimulates many medullary centers – vagal, respiratory, vasomotor. It depresses vestibular excitation and has antimotion sickness property. It suppresses the tremor and rigidity of parkinsonism by blocking the cholinergic over activity in basal ganglia. In high doses cause cortical excitation, restlessness, disorientation, hallucinations and delirium followed by respiratory depression and coma #### Smooth muscle All visceral smooth muscles are relaxed by atropine (M₃ blocked). The tone & contraction of stomach and intestine are reduced; the passage of chyme is slowed – constipation may occur, spasm may be relieved. Atropine causes bronchodilatation and reduces air way resistance, specially in COPD and asthma patients. It has a relaxant action on ureter and urinary bladder; Urinary retention may occur in older males with BPH. relaxation of biliary tract and uterus is minimal. #### Glands Atropine decreases sweat, salivary, tracheobronchial and lacrimal secretion (M₃ blockade). Skin & eye become dry, talking and swallowing may be difficult. It also decreases G.I secretions like pepsin, mucous, HCl etc Local anesthetic → Atropine has a mild anesthetic action on the cornea. ### Therapeutic use #### I. As antisecretory 1. Pre anesthetic medication when irritant general anesthetics (ether) are used, prior administration of anticholinergics (atropine, hyoscine, glycopyrrolate) are imperative to check increased salivary and tracheobronchial secretions. 2. Peptic ulcer atropine drugs decrease gastric secretion and afford symptomatic relief in peptic ulcer (but it is not using nowadays due to their side effects as well as the entry of H2 – blockers). To check excessive sweating or salivation. E.g.:parkinsonism. ### II. As antispasmodic - Intestinal and renal colic, abdominal cramps. - Nervous and drug (reserpine, guanethidine) induced diarrhea, functional diarrhea. - Spastic constipation, irritable colon. - Pylorospasm, gastric hyper motility, gastritis, nervous dyspepsia. - 5. To relieve urinary frequency and urgency, enuresis in children ### III. Bronchial asthma, asthmatic bronchitis, COPD These drugs are less effective than adrenergic drugs. Ipratropium bromide is used in COPD. It has additive bronchodilator action with adrenergic drugs and theophylline. ### IV. As mydriatic & cycloplegic - <u>Diagnostic</u>: for testing error of refraction, both mydriasis and cycloplegia are needed. Tropicamide is used widely. To facilitate fundoscopy only mydriasis is needed. - Therapeutic :- atropine is used in the treatment of iritis, iridocyclitis, choroiditis, keratitis and corneal ulcer. ### ANTICHOLINERGIC DRUGS | NAME OF DRUG | CLASS | receptors | Pharmacological approach | |------------------------|---------------|--|--| | Atropine | alkaloid | Nonselective
competative
antagonist all
muscaranic
receptors in CNS
and periphery | OP poisonong
Pre anaesthetic
mydriatic | | Hyosine | alkaloid | unknown
mechanism in CNS | Motion sickness | | homatropine | semisynthetic | Competative
antagonism to all
M receptors | mydriasis | | Ipratropiumbromid
e | semisynthetic | Competative, nonsel
ective antagonist at
M1 to M3 receptors | Bronchial asthama | | cyclopentolate | synthetic | competative
antagonism at all M
receptors | Mydriasis
Iritis
uveitis | | NAME OF DRUG | CLASS | receptors | Pharmacological approach | |----------------|-----------|------------------------------------|---| | propantheline | synthetic | Selectevely blocks
M1 receptors | Peptic ulcer
Gastritis | | Oxyphonium | synthetic | Selectevely blocks
M1 receptors | Peptic ulcer
Gastrointestinal
hypermotility | | clidinium | synthetic | Selectevely blocks
M1,M3 | Nervous dyspepsia
Gastritis
Irritable bowel
syndrome
Peptic ulcer | | Isopropamide | synthetic | Selectevely blocks
M1,M3 | Nervous dyspepsia
Irritable bowel
Gastrointestinal
problems | | glycopyrrolate | synthetic | Selectevely blocks
M3 receptors | Pre anaesthetic
medication and
during anaesthesia | | NAME OF DRUG | CLASS | Receptors | pharmacological
approach | |----------------|------------------|--|--| | Oxybutynin | Vasicoselective | slight M3 – selective
muscaranic antagonist | Neurogenic bladder,
spina bifida,and
nocturnal enuresis. | | Tolterodine | Vasicoselective | greater selectivity for
M3 receptors | Over active bladder | | Trihexphenidyl | Antiparkinsonian | Antagonist at M
receptors in basal
ganglia | symptomatic
treatment of
Parkinsons disease | | Procyclidine | Antiparkinsonian | Antagonist at M
receptors in basal
ganglia | Parkinsons disease | | Biperiden | Antiparkinsonian | Antagonist at M
receptors in basal
ganglia | Parkinsons disease | ### Drugs that block nicotinic receptors - 1. Neuro muscular blockers - 2. Ganglion blockers Peripherally acting muscle relaxants (or) Neuromuscular blocking agents. A. Non depolarizing (competitive) blockers i. Long acting: d-Tubocurarine, Pancuronium, Doxacurium, Pipecuronium. ii. Intermediate acting: Vecuronium, Atracurium, Cisatracurium, Rocuroniun, Rapacuronium. iii. Short acting: Mivacuranium. B. Depolarizing blockers Succinylcholine (SCh, Suxamethonium), Decamethonium Table 27-1. Some properties of neuromuscular blocking drugs. | Drug | Elimination | Clearance
(mL/kg/min) | Approximate
Duration of
Action (minutes) | Approximate
Potency Relative to
Tubocurarine | |---------------------------------------|--------------------------------|--------------------------|--|--| | soquinoline derivativ | es . | | | | | Atracurium | Spontaneous ¹ | 6.6 | 20-35 | 1.5 | | Cisatracurium | Mostly spontaneous | 5-6 | 25-44 | 1.5 | | Doxacurium | Kidney | 2.7 | > 35 | 6 | | Metocurine | Kidney (40%) | 1.2 | > 35 | 4 | | Mivacurium | Plasma ChE ² | 70-95 | 10-20 | 4 | | Tubocurarine | Kidney (40%) | 2.3-2.4 | > 35 | 1 | | Steroid derivatives | | | | | | Pancuronium | Kidney (80%) | 1.7-1.8 | > 35 | 6 | | Pipecuronium | Kidney (60%) and liver | 2.5-3.0 | > 35 | 6 | | Rocuronium | Liver (75–90%) and kidney | 2.9 | 20-35 | 0.8 | | Vecuronium | Liver (75–90%) and kidney | 3-5.3 | 20-35 | 6 | | Depolarizing agent
Succinylcholine | Plasma ChE ² (100%) | >100 | <8 | 0.4 | Nonenzymatic and enzymatic hydrolysis of ester bonds. Butyrylcholinesterase (pseudocholinesterase). #### Uses of SMR - ☐ 1. In conjunction with GA - ☐ 2. Painful muscle conditions - □ 3. Spastic neurological conditions ### Ganglion blockers Tetraethyl ammonium Hexamethonium Trimethaphan Mecamylamine | Table 11–5 Usual Predominance of Sympathetic or Parasympathetic Tone at Various Effector Sites, and Consequences | |--| |--| | SITE | PREDOMINANT TONE | EFFECT OF GANGLIONIC BLOCKADE | |------------------------|---------------------------------|--| | Arterioles | Sympathetic (adrenergic) | Vasodilation; increased peripheral blood flow; hypotension | | Veins | Sympathetic (adrenergic) | Dilation: peripheral pooling of blood; decreased venous return; decreased cardiac output | | Heart | Parasympathetic (cholinergic) | Tachycardia | | Iris | Parasympathetic (cholinergic) | Mydriasis | | Ciliary muscle | Parasympathetic (cholinergic) | Cycloplegia—focus to far vision | | Gastrointestinal tract | Parasympathetic (cholinergic) | Reduced tone and mobility; constipation; decreased gastric and pancreatic secretions | | Urinary bladder | Parasympathetic (cholinergic) | Urinary retention | | Salivary glands | Parasympathetic (cholinergic) | Xerostomia | | Sweat glands | Sympathetic (cholinergic) | Anhidrosis | | Genital tract | Sympathetic and parasympathetic | Decreased stimulation | ### Uses of Ganglion blockers - 1.To produce controlled hypotension during surgery - 2.Acute hypertensive crisis 3.Chronic severe HTN Not used now a days ### **References:** - Pharmacological basis of Therapeutics Goodman & Gilman 12th Edition. - Principles of pharmacology HL Sharma & KK Sharma. - Bennett and brown Clinical Pharmacology 10th Edition - Essential Medical Pharmacology K. D. Tripathi 7th Edition. ## THANK U