Microscopy

Group 2 Cabatit, Mendoza, Ramos, Rodriguez, Tan

Compound Light Microscope

- A device that transmits light through several lenses to produce an enlarged image of a microscopic specimen.
- Modern compound light microscopes, under optimal conditions, can magnify an object from 1000X to 2000X (times) the specimens original diameter.

Bright Field Microscopy

Bright Field Microscopy

- Simplest optical microscopy illumination technique
- Uses visible light as source of illumination
 - > the shorter the wavelength, the greater the resolution (blue is the best)
- Contrast comes from absorbance of light in the sample, or from staining.
- When the diaphragm is wide open the image is brighter and contrast is low.

Bright Field Microscopy

- · Sources of illumination: Lamp on the base
- Types of image produced: Relatively large internal structures and outline can be seen

Bright-field

Colored or clear specimen against bright background

- Total Magnification: (if 10x ocular magnification is used)
 Range: 10x-1000x
- Resolution: Up to 200nm (white light)

- Type of microscopy which is the exact opposite of a bright field microscope
- Dark background/field with the specimen being the only one illuminated.
- · Used in observing unstained specimens
- Most microscopes have the potential to do dark field microscopy such as compound or stereomicroscopes.

- · Light source: Light bulb from a microscope
- Condenser type: Specialized to block most light from the source; contains an annular/patch stop which disperses the light in various directions, resulting to a "cone of light"
- Image formed: Dark background with illuminated specimen; may be inverted or not depending on microscope used

 Total Magnification: Can range from those of compound microscopes (10x to 1000x)

Pros and Cons of Dark Field Microscopy

Advantages

- Used to view unstained specimens more clearly.
- Can be used to study various live bacteria, protists, algae, fu ngi, and many other cultures.
- Can examine the external of the specimen with detail

Disadvantages

- Can be inaccurate compared to other methods.
- Special care if more needed for this type of microscopy to prevent aberrations.
- Needs intense amount of light which can hurt the eyes and cause glare.
- Air bubbles in the slide can cause problems.

Phase Contrast Microscopy

Phase-contrast microscope

- · Type of light microscope
- Enhances contrast in micrographs by converting phase shifts of light waves into brightness
 - · Offers more contrast than brightfield microscopy
- Does not require the use of staining procedures which usually kill cells
 - Especially useful for examining living, unpigmented cells

Source of illumination

· Visible light from an illuminator

TOTAL MAGNIFICATION

 Phase contrast objective lenses (Nikon) come in 4x, 10x, 20x, and 40x powers, so the total magnification for phase contrast microscopes range from 40x to 400x

- Differences in density (Campbell et. al., 1999) or refractive index (Tortora et. al., 2007) within the specimen or cell causes light waves to be diffracted at different degrees
- Diffraction of light waves implies a change in the phase of their wavelength

- A unique part of the phase-contrast microscope, called the phase-plate, amplifies this change in phase to one-half wavelength
- When both the direct (undiffracted) and reflected (diffracted) types of light waves converge at the ocular lens, constructive and destructive interference occurs

- Constructive interference corresponds to bright spots in the field of view
- Destructive interference corresponds to dark spots
 Living Cells in Brightfield and Phase Contrast

(a)

(b)

Figure 2

Type of image produced

 The end result is a magnified and highly contrasted view of a living, unstained, normally transparent specimen

Electron Microscopy

Scanning Electron Microscope

- · Illumination: electrons
- Magnification: ~100,000x
- How it works: Detect electrons back-scattered by the sample.
- Image: Monotone (but may be color enhanced), 3-D surface of specimen

- Magnetic lens—
 focuses electron
 beam
 Scanning coils—for
- systematic scanning
 (left to right, then
 down)

 Backscattered
- Electron Detector—
 detects electrons that
 bounced off the film
- Secondary Electron
 Detector- detects

electrons emitted by http://www.purdue.edu/rem/rs/graphics/sem2.gif

Pros

Cons

High magnification

 Needs specimen to be in vacuum

- High resolution
- · Shows the surface of specimen
- Needs living cells and tissues and whole, soft-bodied organisms to be treated, usu. coated w/ gold film
- No color
- Cannot examine live specimen
- Really. Big. And Expensive. Equipment.

Transmission Electron Microscope

- · Illumination: electrons
- Magnification: ~100,000x
- How it works: Detect electrons scattered as they move through the sample.
- Image: Monotone (but may be color enhanced), 2-D structure of specimen

Source: http://www.lab.anhb.uwa. edu.au/hb313/main_pag es/timetable/lectures/lma

ge6.gif

Pros

Cons

- High magnification
 - High resolution
- Shows small structures that cannot be seen under light microscopes
- Needs specimen to be in vacuum
 - Needs specimen to be covered in gold film
- Specimen <100nm thick (obviously cannot observe live specimen)
- No color
- Really. Big. And. Expensive.
 Equipment

