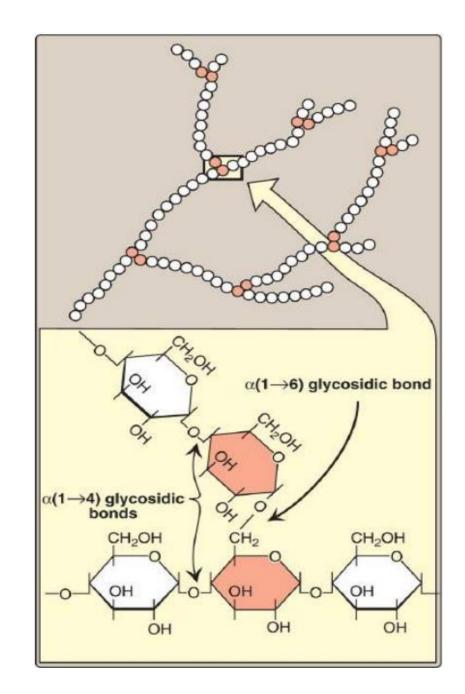
Glycogen metabolism and Glycogen storage diseases

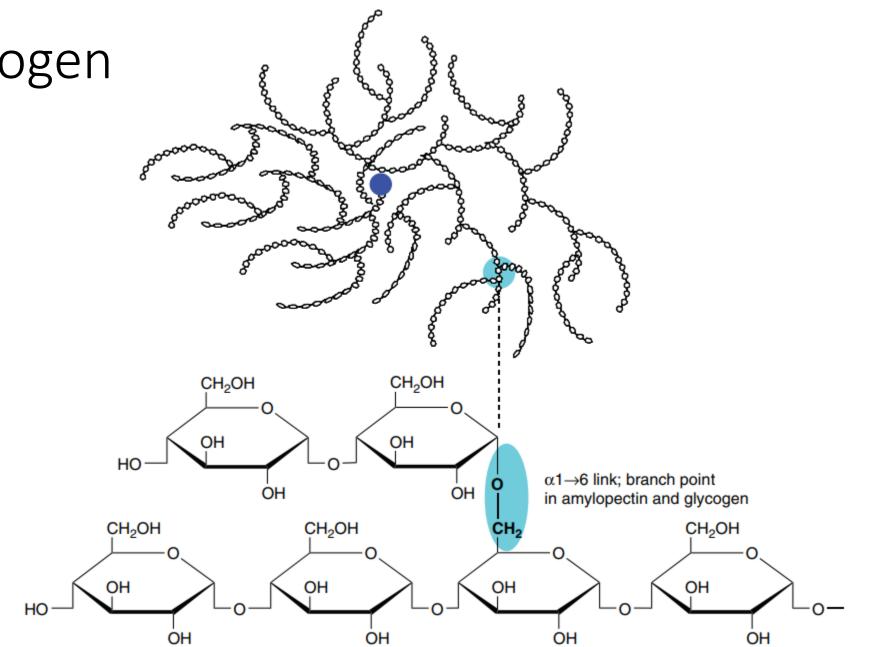
Dr. Saba Amin Khan

Assistant Prof.

Biochemistry dept.

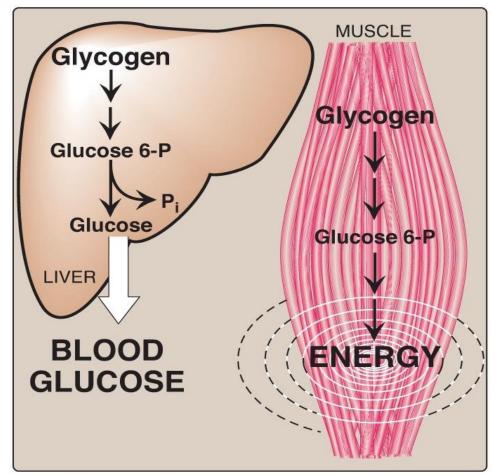

Glycogen metabolism

Glycogenesis: Synthesis of glycogen


Glycogenolysis: Breakdown of glycogen

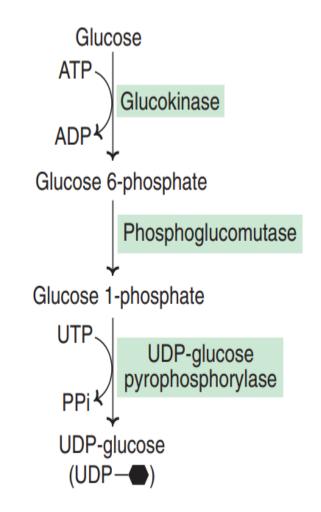
Glycogen

- Storage form of glucose.
- Stored mainly in liver and muscle.
- Branched polymer of glucose residues
- Yield glucose on breakdown.
- Glucose in glycogen are linked linearly:
 - by α -1,4-glycosidic bonds.
- Branches at about every tenth residue are created by α -1,6-glycosidic bonds



Glycogenesis

- Polymerization of glucose into glycogen
- Mainly occurs in muscle and liver.
- Liver glycogen functions to store and export glucose to maintain blood glucose levels.
- Muscle glycogen provides a readily available source of glucose for glycolysis.



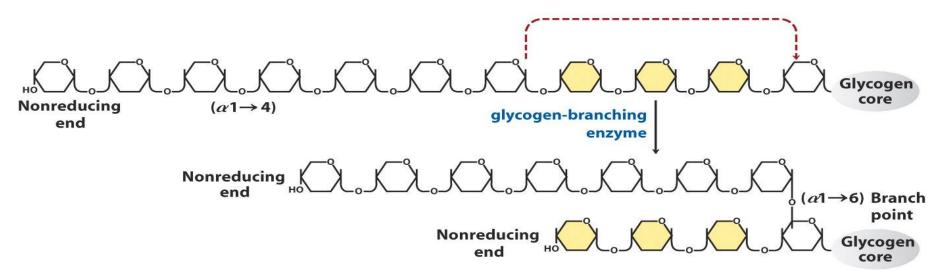
Steps of Glycogenesis

- Activation of Glucose
- Initiation of glycogen synthesis
- Elongation of glycogen chain
- Glycogen branching (formation of glycogen branching)

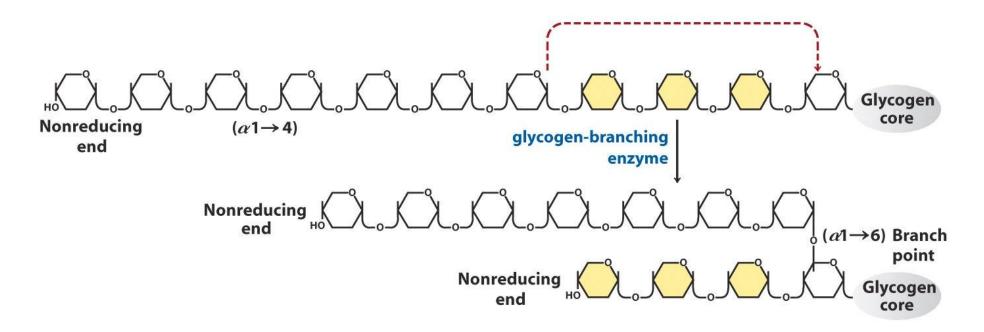
Activation of Glucose

- Synthesis of glycogen from glucose is carried out by the enzyme **Glycogen synthase**.
- UDP-glucose, the glucose donor, is an activated form of glucose.
- UDP-glucose is formed from glucose-1-phosphate by UDPGlc-pyro-phosphorylase.
- Phosphoglucomutase catalyzes the conversion of glucose 6-phosphate to glucose 1-phosphate.

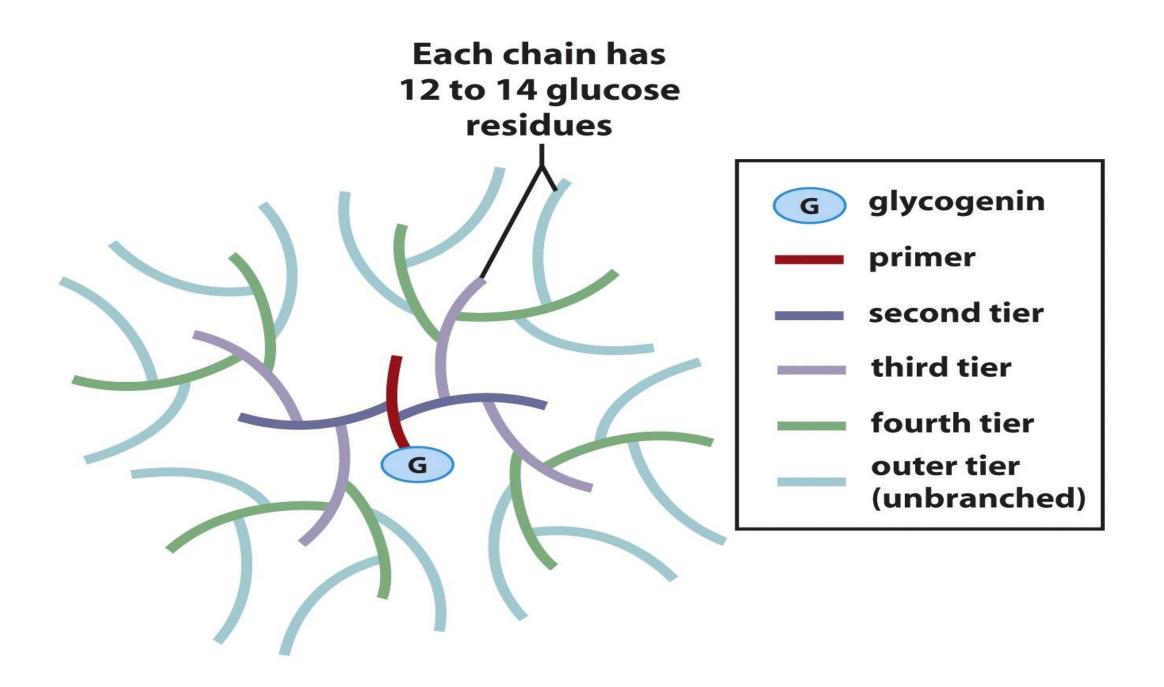
Initiation of glycogen synthesis

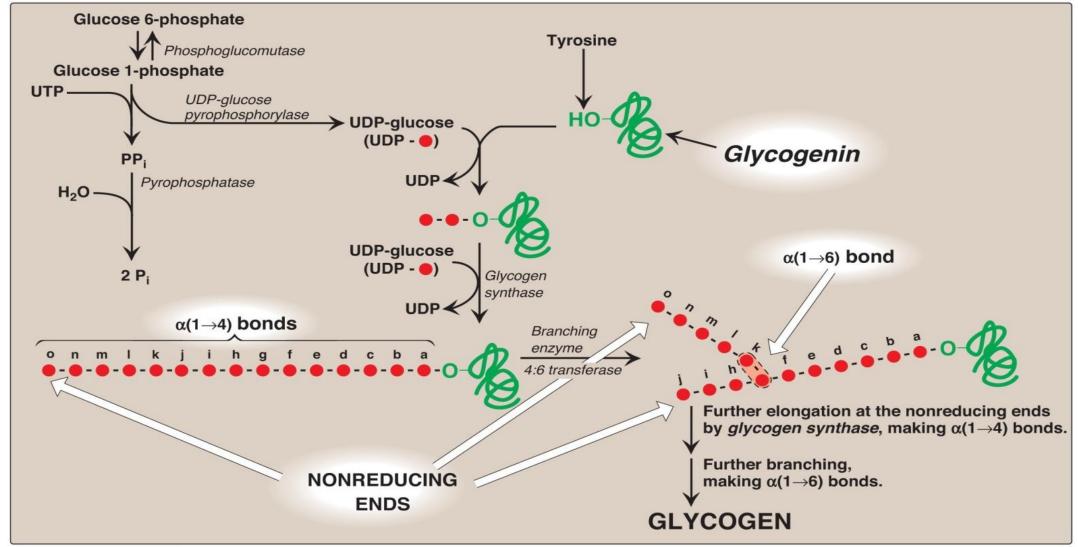

- Glycogenin- (37-kDa) protein is present at the core of the glycogen granule acts as an initiator of glycogen synthesis.
- Specific tyrosine residue of glycogenin gets glucosylated by UDPGlc.
- Glycogenin catalyzes the transfer of a further seven glucose residues from UDPGlc, in 1 → 4 linkage, to form a glycogen primer.
- Glycogen primer is the substrate for glycogen synthase.

Elongation of glycogen chain


- Glycogen synthase catalyzes the formation of a glycoside bond between C-1 of the glucose of UDPGlc and C-4 of a terminal glucose residue of glycogen primer, liberating uridine diphosphate (UDP)
- Addition of a glucose residue to a glycogen chain occurs at the nonreducing, outer end of the molecule.
- Elongation of glycogen chain occurs with successive $1 \rightarrow 4$ linkages.

Formation of branches in glycogen


- When a growing chain is at least 11 glucose residues long, glycogen branching is done by branching enzyme (glucosyl α -4-6 transferase).
- Branching enzyme transfers at least six glucose residues of α 1-4 chain, to a neighboring chain by α 1 \rightarrow 6 linkage.
- Branches grow by further additions of $1 \rightarrow 4$ -glucosyl units.


4. Branching by glycogen-branching enzyme

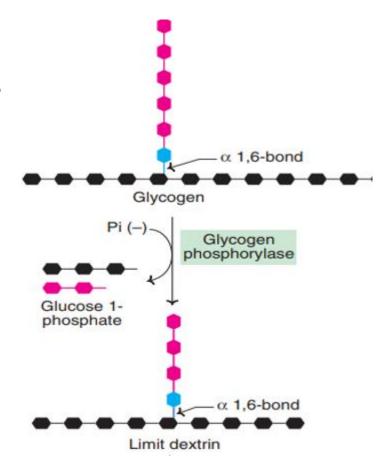
 Glycogen-branching enzyme transfer of a terminal fragment of 6 or 7 glucose residues from the non-reducing end of a glycogen branch having at least 11 residues to the C-6 hydroxyl group of a glucose residue at a more interior position of the same or another glycogen chain.

Synthesis of glycogen (Glycogenesis)

Copyright @ 2014 Wolters Kluwer Health | Lippincott Williams & Wilking

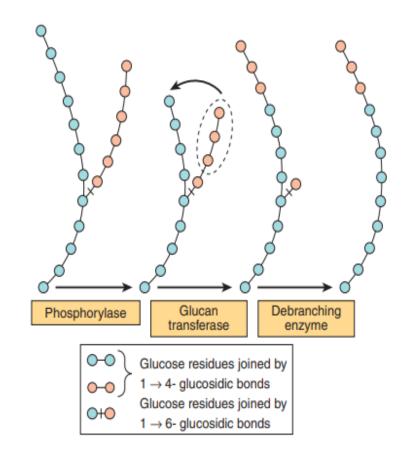
Glycogenolysis

Mobilizing glycogen

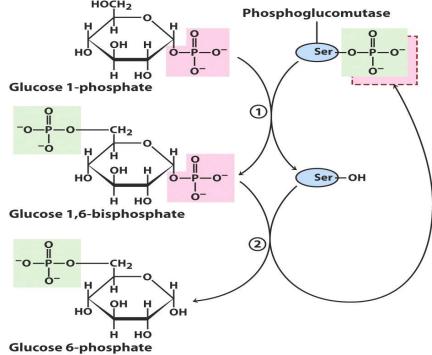

Glycogenolysis

• Glycogenolysis is not the reverse of glycogenesis

- End product of glycogenolysis: glucose 6-phosphate or glucose.
- Glycogen is degraded by breaking D-1,4- and D-1,6-glycosidic bonds.
- Independent set of enzymes are required:
 - Glycogen phosphorylase
 - Debranching enzyme
 - Phosphoglucomutase.


Phosphorolysis—Shortening of chains

- Glycogen phosphorylase sequentially cleaves the α(1→4) glycosidic bonds at the nonreducing ends of the glycogen chains
- This simple phosphorolysis continues until four glucosyl units remain on each chain before a branch point.
- Limit dextrin formed, cannot be further degraded by phosphorylase.
- Glycogen phosphorylase requires pyridoxal phosphate as a coenzyme


Removal of branches

- Branches of glycogen are removed by two enzyme activities of the **debranching enzyme**.
- One is a glucan transferase that transfers a trisaccharide unit from one branch to the other, exposing the 1 → 6 branch point.
- Other is a 1,6-glycosidase that catalyzes the hydrolysis of the 1 → 6 glycoside bond to liberate free glucose.

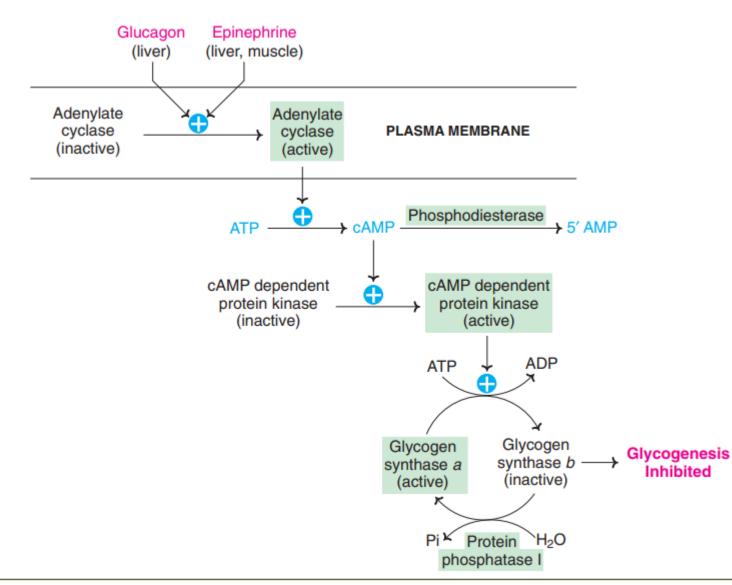
Formation of glucose 6-phosphate and glucose

- Action of glycogen phosphorylase and debranching enzyme, produce glucose 1-phosphate and free glucose in a ratio of 8 : 1.
- Glucose 1-phosphate is converted to glucose 6-phosphate by the enzyme phosphoglucomutase.

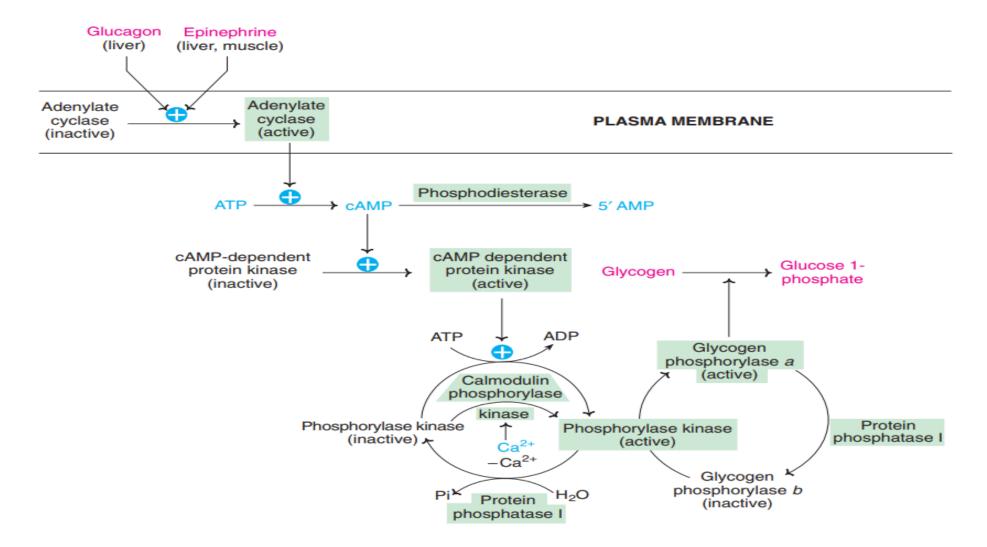
Fate of glucose 6-phosphate

- Liver, Kidney, and Intestine contain the enzyme glucose 6-phosphatase that cleaves glucose 6-phosphate to glucose.
- This enzyme is absent in muscle and brain, hence free glucose cannot be produced in these tissues.

Regulation of glycogenesis and glycogenolysis


- Both glycogenolysis and glycogen synthesis occur in the cytosol
- Both pathways have G-6-P and G-1-P as intermediates
- So, need some mechanism to ensure only one pathway is active at any one time.
- Signals that activate glycogen synthase inhibit glycogen phosphorylase.
 - ✓ Allosteric regulation
 - \checkmark Hormonal regulation
 - ✓Influence of calcium

Allosteric regulation of glycogen metabolism


• Certain metabolites that allosterically regulate the activities of glycogen synthase phosphorylase.

Hormonal regulation of glycogenesis

Hormonal regulation of glycogenolysis

Effect of Ca²⁺ ions on glycogenolysis

- When the muscle contracts, Ca²⁺ ions are released from the sarcoplasmic reticulum.
- Ca²⁺ binds to calmodulin-calcium modulating protein.
- Directly activates phosphorylase kinase without the involvement of cAMP-dependent protein kinase

Glycogen Storage Diseases (Glycogenoses)

Glycogen storage diseases

- These disorders are characterized by the deposition of normal or abnormal types of glycogen in one or more tissues.
- Metabolic defects concerned with glycogen synthesis and degradation
- Found principally in liver and muscle

TABLE 18-2 Glycogen Storage Diseases

Туре	Name	Enzyme Deficiency	Clinical Features	
0	_	Glycogen synthase	Hypoglycemia; hyperketonemia; early death	
la	Von Gierke disease	Glucose-6-phosphatase	Glycogen accumulation in liver and renal tubule cells; hypoglycemia; lactic acidemia; ketosis; hyperlipemia	
lb	_	Endoplasmic reticulum glucose-6- phosphate transporter	As type Ia; neutropenia and impaired neutrophil function leading to recurrent infections	
Ш	Pompe disease	Lysosomal $\alpha_1 \rightarrow 4$ and $\alpha_1 \rightarrow 6$ glucosidase (acid maltase)	Accumulation of glycogen in lysosomes: juvenile onset variant, muscle hypotonia, death from heart failure by age 2; adult onset variant, muscle dystrophy	
Illa	Limit dextrinosis, Forbe or Cori disease	Liver and muscle debranching enzyme	Fasting hypoglycemia; hepatomegaly in infancy; accumulation of characteristic branched polysaccharide (limit dextrin); muscle weakness	
IIIb	Limit dextrinosis	Liver debranching enzyme	As type Illa, but no muscle weakness	
IV	Amylopectinosis, Andersen disease	Branching enzyme	Hepatosplenomegaly; accumulation of polysaccharide with few branch points; death from heart or liver failure before age 5	
V	Myophosphorylase deficiency, McArdle syndrome	Muscle phosphorylase	Poor exercise tolerance; muscle glycogen abnormally high (2.5%-4%); blood lactate very low after exercise	
VI	Hers disease	Liver phosphorylase	Hepatomegaly; accumulation of glycogen in liver; mild hypoglycemia; generally good prognosis	
VII	Tarui disease	Muscle and erythrocyte phosphofructokinase 1	Poor exercise tolerance; muscle glycogen abnormally high (2.5%-4%); blood lactate very low after exercise; also hemolytic anemia	
VIII		Liver phosphorylase kinase	Hepatomegaly; accumulation of glycogen in liver; mild hypoglycemia; generally good prognosis	
IX		Liver and muscle phosphorylase kinase	Hepatomegaly; accumulation of glycogen in liver and muscle; mild hypoglycemia; generally good prognosis	
×		cAMP-dependent protein kinase A	Hepatomegaly; accumulation of glycogen in liver	

Features of glycogen storage diseases

Туре	Name	Enzyme defect	Organ(s) involved	Characteristic features	Glycogen
I	von Gierke's disease (type I glycogenosis)	Glucose 6-phosphatase	Liver, kidney and intestine	Glycogen accumulates in hepatocytes and renal cells, enlarged liver and kidney, fasting hypoglycemia, lactic acidemia; hyperlipidemia; ketosis; gouty arthritis.	
II	Pompe's disease	Lysosomal α -1,4 gluco- sidase (acid maltase)	All organs	Glycogen accumulates in lysosomes in almost all the tissues; heart is mostly involved; enlarged liver and heart, nervous system is also affected; death occurs at an early age due to heart failure.	Glucose Branching Enzyme (GSD IV) Glycogen Synthase GSD VI) Glycogen Synthase GSD VI)
Ш	Cori's disease (limit dextrinosis, Forbe's disease)	Amylo α -1,6-glucosidase (debranching enzyme)	Liver, muscle, heart, leucocytes	Branched chain glycogen accumulates; liver enlarged; clinical manifestations are similar but milder compared to von Gierke's disease.	UDPG Debranching Enzyme (GSD III) Glucose-1-P
IV	Anderson's disease (amylopectinosis)	Glucosyl 4-6 transferase (branching enzyme)	Most tissues	A rare disease, glycogen with only few branches accumulate; cirrhosis of liver, impairment in liver function.	
V	McArdle's disease (type V glycogenosis)	Muscle glycogen phosphorylase	Skeletal muscle	Muscle glycogen stores very high, not available during exercise; subjects cannot perform strenous exercise; suffer from muscle cramps; blood lactate and pyruvate do not increase after exercise; muscles may get damaged due to inadequate energy supply.	Glucose-6-Phosphate Transporter (GSD IB)
VI	Her's disease	Liver glycogen phosphorylase	Liver	Liver enlarged; liver glycogen cannot form glucose; mild hypoglycemia and ketosis seen.	Phosphofructokinase 2
VII	Tarui's disease	Phosphofructokinase	Skeletal muscle, erythrocytes	Muscle cramps due to exercise; blood lactate not elevated; hemolysis occurs.	(GSD VII) Fructose-1,6-P

Type 1:Von Gierke's disease

(Figure 11.8 continued) **TYPE Ia: VON GIERKE DISEASE** (GLUCOSE 6-PHOSPHATASE DEFICIENCY) Repeat steps 2 3 **TYPE ID: GLUCOSE 6-PHOSPHATE** TRANSLOCASE DEFICIENCY **GLUCOSE 1-P** GLUCOSE (Ratio ~8:1) + Affects liver and kidney Fasting hypoglycemia—severe MUSCLE Phosphoglucomutase • Fatty liver, hepato- and renomegaly • Progressive renal disease **GLYCOLYSIS Glucose 6-P** Growth retardation and delayed puberty Lacticacidemia, hyperlipidemia, and hyperuricemia LIVER H20- Normal glycogen structure; increased Glucose 6-phosphatase glycogen stored P_iK • Type lb also characterized by neutropenia and recurrent infections Glucose Treatment: Nocturnal gastric infusions of glucose or regular administration of uncooked cornstarch **GLUCOSE**

Copyright @ 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins

THANK YOU