

BIOMOLECULES

Presented by,
Ms.Revathi gnanavelou, M.Pharm.,
Assistant professor
Department of pharmaceutical chemistry
Shri venkateshwara college of pharmacy
Puducherry.

1. INTRODUCTION

2. CLASSIFICATION

BIOMOLECULES

1. INTRODUCTION

- ARE THE MOLECULES OCCURRING IN LIVING ORGANISMS
- USED FOR MAINTENANCE & METABOLIC PROCESSES OF LIVING ORGANISMS

TWO TYPES

Proteins Carbohydrates Lipids Nucleic acids

Macromolecules (Large molecules) Micromolecules (Small Molecules)

Natural products Primary & Secondary metabolites

IMPORTANT BIOMOLECULES

Elements constitute about 90% of Human Body.

Biomolecules are endogenous but rarely exogenous like Pharmaceutical drugs from natural / synthetic

SMALL MOLECULES	DERIVED MACROMOLECULE	ATOMIC CONSTITUENTS
Amino acids	Proteins	C,H,O,N
Sugars	Starch	С,Н,О
Fatty acids	Fats, oils	С,Н,О
Purine & Pyrimidine	Nucleic acids	C,H,O,N
Nucleotide	DNA & RNA	C,H,O,N,P

Biomolecules characteristics

- ☐Organic compounds
- ☐Mostly asymmetric
- ☐Specific shapes & dimensions
- ■Determination of structure and function of the cell
- □Chemical properties based on functional groups of molecules
 - □Involved in exchange of energy

Chemical Nature Of Biomolecules

- Are organic compounds mainly contain carbon
- Linked with each other by covalent bond
- Proteins, lipids, polysaccharides and nucleic acids -> complex biomolecules
- Ribosomes, lipoproteins → supra macromolecules
- Micromolecules → linked together → form macromolecules

Eg:

Glucose \rightarrow glycogen

Amino acid \rightarrow protein

Biomolecules structure

- Intricately Folded Three Dimensional Structure
 - Formed By Proteins, RNA & DNA

Biomolecules functions

Human body → 60% water, 15% proteins & lipids, 2% carbohydrates & 8% minerals

Biomolecules	Monomers	Examples	Functions
Carbohydrates	Monosaccharides	Glucose, Fructose, Lactose cellulose	Provides cell energy & constitution of cell membrane
Proteins	Amino acids	Hemoglobin, Insulin, Enzymes, Antibodies	Provide structure of the body, energy, improve rate of rxn & immunity
Lipids	Glycerol & fatty acids	Fats, oils, waxes	Stores energy as insulator & protector
Nucleic acids	Nucleotides	DNA, RNA	Genetic information for growth & development
Enzymes	Amino acids	Citric acid synthetase, topoisomerase, Estrases, Fumarase	Biocatalyst

- Carbohydrates → Polyhydroxyaldehydes Or Ketones Or Compounds Which Produce Them On Hydrolysis
- Also Known As Saccharides → Sakcharon sugar.
- 3 types → Mono & Oligo saccharides → Sweet in taste (called sugars)
- Poly → tasteless (Non- sugars)
- Glycome → entire spectrum of carbohydrates of an organism
- Glycomics → study of glycomes that includes physiological, pathological, genetics & various

 aspects
- Glycobiology → study of carbohydrates in health & diseases.

CARBOHYDRATES C_n(H₂O)_n

Monosaccharide

Eg: Glucose , Fructose

SIMPLE

Disaccharides Eg: Sucrose, Maltose

☐ Sweet simple sugars

- ☐ Composed of 3-7 C- atoms
 - ☐ Easily soluble☐ LMW compounds
 - ☐ Reducing Sugars

COMPLEX

Bonds

Polysaccharide Eg: starch, dextrin

two

between

☐ Polymer / complex sugars

shared

monosaccharides are the glycosidic bonds

- ☐ Tasteless
- ☐ Insoluble ☐ HMW compounds
- ☐ Reducing Sugars

COMMON FUNCTIONAL GROUP

ALDOSES

(Functional group in Monosaccharides is aldehydes)

> Glucose Glyceraldehyde

H_C=0

CH₂OH

Monosaccharide

Eg: Glucose, Fructose

CH2-OH

KETOSES

(Functional group in Monosaccharides is Ketones)

Fructose Dihydroxyacetone

> CH₂OH | C=0 |

DIFF B/W MONO, OLIGO & POLYSACCHARIDES

Character	Monosaccharides	Oligosaccharides	Polysaccharides
Glycoside bond	Absent	Present	Present
Reducing sugar	Always reducing sugar	May or may not be	Always non reducing sugar
Molecular Weight	Low	Moderate	High
Taste	Sweet taste	Minimally sweet	No taste
Solubility	Soluble	Soluble	Insoluble Nature
Examples	Glucose, fructose	Sucrose, Maltose	Starch, dextrin, cellulose

Properties of carbohydrates

- · Act as energy reserves, also stores fuels, and metabolic intermediates.
- Ribose and deoxyribose sugars forms the structural frame of the genetic material, RNA and DNA.
- Polysaccharides like cellulose are the structural elements in the cell walls of bacteria and plants.
- Carbohydrates
 Iinked to proteins and lipids play important roles in cell interactions.
- Carbohydrates are organic compounds
 aldehydes or ketones with many hydroxyl groups.

CHEMICAL NATURE OF CARBOHYDRATES

- Optically Active Polyhydroxy Aldehydes Or Ketones On Hydrolysis
- Based On Hydrolysis → Classified As Mono Di & Polysaccharides
- Glucose Is Monosaccharides → Procured From Hydrolysis Of Starch
- · Monosaccharides Are Optically Active
- 2 Monosaccharides Joined Together With Glycosidic Linkage → Form Disaccharides
- Long Chain Monosaccharides Joined Together With Glycosidic Linkage → Form Polysaccharides

Hydrolysis Form Sugar Alcohol Monosaccharides Oxidation Form Sugar Acids

Monosaccharides

- Also known as simple sugars
- -Classified either by the number of carbon atoms or by the nature of functional group-aldoses or ketoses
- -Most of the carbohydrates (99%) are straight chain compounds
- -D-glyceraldehyde is the simplest of the aldoses (aldotriose)
- -All other sugars have the ending <u>ose</u> (glucose, galactose, ribose, lactose, etc...)

Classification of Monosaccharides

No. of Carbon	Type of sugar	Aldoses	Ketoses

TRIOSES Glyceraldehydes Dihydroxyacetone

TETROSES 4 Erythrose Erythrulose Ribulose,

PENTOSES 5 Ribose, Xylose

Glucose,

HEXOSES 6

HEPTOSES

Fructose Galactose

xylulose

Glucoheptose Sedoheptulose

Chemistry Of Carbohydrates

- Steroisomerism Compound having Same Structural Formula But They Differ In Spatial Configuration.
- Eg: They Are D-glucose And L-glucose.
- Carbon is asymmetric attached with 4 different Atoms
- · Glucose- 4 asymmetric carbons & 16 isomers
- Glyceraldehyde one asymmetric carbons & 2 stereoisomers → reference carbohydrates

L-Glucose

D & L ISOMERS

- Mirror Images Of Each Other
- Spatial Configuration / Orientation Of

-H & -OH Groups On C-atoms Adjacent

To Primary Alcohol Determines Whether

The Sugar Is D Or L Isomers

Optical Activity

The Rotation Of Plane Polarized Light Forming (+) Glucose And (-) Glucose.

ENANTIOMERS

SPECIAL TYPE OF STEREO ISOMERS → MIRROR IMAGES TO EACH OTHER

EPIMERS

Monosaccharides differ from each other in a

configuration around a single C-atom

Interconversion of epimers

EPIMERIZATION

D-glucose and D-galactose are epimeric at carbon-4

CONFIGURATION

D-Aldoses

 Using killiani fischer synthesis – glyceraldehyde as aldotriose to aldohexose by increase chain length of C-1 at a time

D-Ketoses

Starts from DHA→ Form 5 keto sugars

STRUCTURE OF GLUCOSE

FORMATION OF HEMIACETALS / HEMIKETALS

Aldehyde Alcohol Hemiacetal

FISCHER PROJECTION

Open chain form

Aldehyde group of glucose at C-1 reacts with alcohol group of C-5 to form α and β glucose forms

β-Configuration OH to left of anomeric carbon

CYCLIC FORMS

ANOMERS & MUTAROTATION

Alpha (α) and beta (β) isomers ("anomers") differ in the orientation of the OH at the C-1 hemiacetal carbon

Example: D-glucose

"alpha" (a) isomer:

C₅-CH₂OH (up) and C₁-OH (down) are on **opposite** faces of the ring

HO HO 3 OH I

α-D-Glucose

drawn as "chair"

Specific rotation: [a]p20 + 112°

"beta" (ß) isomer:

C₅-CH₂OH (up) and C₁-OH (up) are on the same face of the ring

β-D-Glucose drawn as "chair"

Specific rotation: $[\alpha]_D^{20}$ + 18.7°

Note different specific rotations!

REACTIONS OF CARBOHYDRATES

TAUTOMERISATION

SHIFTING OF HYDROGEN ATOM FROM ONE CARBON TO ANOTHER -> FORM ENEDIOLS

Reducing Properties of Monosaccharides

Hexose sugars with a free or potentially free aldehyde or ketone group have reducing properties in alkaline solutions. These reducing sugars can reduce cupric ions (Cu+2) into cuprous ions (Cu+1).

OSAZONE FORMATION WITH PHENYLHYDRAZINE & GLUCOSE

When Reducing Sugars Are Reacted With Excess Of Phenylhydrazine At Boiling
Temperatures → forms Osazones

Fructosazone

Needle/broom stick shaped crystals

Maltosazone

Sunflower shaped crystals

Lactosazone

Powderpuff or hedgehog shaped crystals

Viewed under the microscope: Galactosazone

Rhombic plates like crystals

BENEDICTS TEST

H P		HQ O	
C A	+ 2 Cu ⁺² + 5 OH · —	→ Ğ	+ Cu ₂ O + 3 H ₂ O

i	Precipitate Colour	% of Reducing Sugar
1	Green	0.5%
	Yellow	1.0%
	Orange	1.5%
	Red	2%

Aldehyde

Cupric ions

Carboxylic acid

Cuprous oxide

Benedict's Test

MOLISH TEST

Pentose

Нехозе

Purple ring

Purple ring

TEST FOR CARBOHYDRATES

DISACCHARIDES

Carbohydrates that are made up of 2 monosaccharide units

- These are also of low molecular weight and soluble in water
- Sweet to taste.
- Example Lactose, Sucrose, maltose (Digestible disaccharides in food)

Sucrose

(Glucose-fructose)

Lactose

(Galactose-glucose)

Maltose

(Glucose-glucose)

SUCROSE GLYCOSIDAL LINKAGE

- Polysaccharides are polymers of D-glucose
- Important polysaccharides are:
 - Starch (Amylose and Amylopectin)
 - Glycogen
 - Cellulose
 - Chitin

D-Glucose

HETEROPOLYSACCHARIDES

Having uronic acid & amino sugars.				
	Н	Heparan Sulphate	Glucosamine	Glucuronic acid
	Н	Heparin	Glucosamine	Iduronic acid
	Ну	Hyaluronic acid	N Ac Glucosamine	Glucuronic acid
	к	Keratan sulphate	N Ac Glucosamine	Galactose

C

D

Chondroitin sulphate N Ac Galactosamine Glucuronic Acid

bis Dermatan sulphate N Ac Galactosamine Iduronic acid

SOURCE OF ENERGY

STORED AS GLYCOGEN

MAINTAIN GLUCOSE LEVEL OF PLASMA

Functions of carbohydrates

CONTROL BODY TEMPERATURE

METABOLISM OF AMINO & FATTY ACIDS

EXCESS OF CARBOHYDRATES CONVERTS TO FATS INCREASE PERISTALTIC MOVEMENT OF FOOD

BIOLOGICAL ROLE OF CARBOHYDRATES

Biologically active monosaccharides are D- sugars

Provide mechanical support to the plants

Supply carbon for synthesis of cell

Provide energy through oxidation

Provide Nucleic acids

DNA & RNA provides genetic information

Store chemical energy

Part of antibiotic drugs streptomycin / aminoglycosides

Participate in biological transport

cell-cell communication and activation of growth factors

Chief energy source

Glucose is broken down by glycolysis/ kreb's cycle to yield ATP.

FOODS RICH IN CARBOHYDRATES

- Strachy Foods
- Legumes, Starchy Vegetables, Whole-grain Breads And Cereals.
- Occur Naturally With Vitamins And Minerals In Foods Like Milk, Fruits, And Milk Products.
- Found In Refined And Processed Products Like Candy, Carbonated Beverages,
 And Table Sugar

THANK YOU...

For contact....!!

revathi20reva@gmail.com