# **DIURETICS**

PRESENTED BY
Priyanka Priyadrsani Nayak
M.Pharmacy.

# **DIURETICS**

## **DEFINITION:**

- These are drugs which cause a net loss of Na+ and water in urine
- There are several categories of diuretics. All diuretics increases the excretion of water from body.

# Renal Tubule



# CLASSIFICATION

# Diuretics are Classified as:

- 1. High ceiling /Loop diuretics...
- 2. Thiazides.
- 3. Carbonic anhydrase inhibitors.
- 4. Potassium sparing diuretics.
- 5.Osmatic diuretics.
- 6.Low ceiling diuretics.

# DIURETICS CLASSIFICATION

# 1.HIGH EFFICACY DIURETICS:

(Inhibitors of Na+,K+,2Cl- cotransport)

(a) Sulphamoyl deravatives:

Furosemide.

Bumetanide.

Torasemide.

(b) Phenoxyacetic acid derivative: Ethacrynic acid.

# MEDIUM EFFICACY DIURETICS

2.Medium efficacy diuretics : (Inhibitors of Na+,Cl- symport)

(a) Benzothiadiazines(THIAZIDES):

Hydrochloro thiazide.

Benzthiazide.

Hydroflumethe thiazide.

Ciopamide.

(b) Thiazide: Chlorthalidone.

Metolazone.

Xipamide.

Indapamide.

# WEAK OR ADJUNCTIVE DIURETICS

- 3. Weak or adjunctive diuretics:
  - (a) Carbonic anhydrase inhibitors:

Acetazolamide.

- (b) Potassium –sparing diuretics:
- (i)Aldosterone antagonist:

Spironolacton

Eplerenone.

(ii)Inhibitors of renal epithial Na+ channel:

Trimterene.

Amiloride.

(c) Osmotic diuretics:

Mannitol.

Isosorbide.

Glycerol.

(d) Xanthines:

Theophlline.

# ANTI- DIURETICS

1.Anti diuretic homone(ADH) and its analogues:

Vasopressin.

Desmopressin.

Lypressin.

Terlipressin.

2. Diuretics:

Thiazides.

Amiloride.

3. Miscellineous:

Chlorpropamide.

Carbamazepine.

# MECHANISM OF DIURETICS

# Mechanism of action of commonly used diuretics

| Site of Action                                                        | Channel Inhibited | Percent Excreted |
|-----------------------------------------------------------------------|-------------------|------------------|
| Loop of Henle Furosemide, burnetanide, ethacrynic acid                | Na/K/2CI          | Up to 25         |
| Distal Tubule<br>Thiazides                                            | Na/CI             | Up to 3-5        |
| Cortical Collecting Tubule Spironolactone, amiloride, and triamterine | Na channel        | Up to 1-2        |

# MECHANISM OF ACTION

# **Diuretics: Mechanism of Action**



# MECHANISM OF ACTION OF LOOP DIURETICS



Sodium and chloride are not reabsorbed, resulting in increased excretion of these ions



ATP-Dependent Na\*/K\* Pump Na\*/CI\* Cotransporter

ATP = adenosine triphosphate

Morrison RT. Med Clin North Am. 1997;01:689-704; Brater DC, Am J Ned Sci. 2000;319:38-50.

Binding Inhibited



# Loop diuretics

Site of action – enter via filtration and secretion by the OATs. Act on TAHL

Mechanism – inhibition of Na+/K+/2Clsymporter. Positive luminal potential ↓ Mg+, Ca2+ reabsorption ↓ Hypochloremia due to NKCC block Large doses abolish osmotic gradient TAHL - thick ascending loop of Henle

impermeable to water!

Transcullular:

Via specialized luminal Na+K+ CI- co-transporters.

Na/H antiporter continues to reabsorb Na+ and excrete H+

Paracellular, Sackleak of K+ creates lumen positive 6mV transepit/velial gradient which drives paracellular movement of cations out of the lumen.



MedPhys RL3

-

Renal vascular resistance 1, RBF † via effect on prostaglandins.

Kidney is not able to produce dilute urine.

After initial strong diuresis - diuretic braking.

Urine – increased excretion of all ions: Na+, Cl-, K+, H+, Mg2+, Ca2+, as well as HCO<sub>3</sub>, in case of furosemide (Furosemide is a weak CA inhibitor).

Plasma - hypochloremic alkalosis and hypokalemia (mechanisms are similar to thiazide duiretics and will be considered shortly)

# INDICATIONS AND SIDE EFFECTS

# Indications & Side Effects

- Loop diuretics
  - large volume diuresis
  - isotonic urine (as compared to plasma)



- edema
  - congestive heart failure
  - · acute pulmonary edema
  - cimhosis
  - nephrotic syndrome
- hypertension
- hypercalcemia
- forced diuresis

#### Side effects

- excess volume depletion
  - circulatory collapse
  - azotemia & hyperuricemia
- hypokalemia
  - cardiac arrhythmias
- hypocalcemia
- hypomagnesemia
- ototoxicity

# Thiazides - Mechanism Of Action

- Act In The Distal Tubule
- Inhibit Reabsorption Of Sodium
   And Potassium
- Stimulate The Reabsorption Of Calcium
- Loss Of Water As Urine

# MECHANISM OF THIAZIDE DIURETICS

# Thiazide Diuretics Mechanism of Action

Binding

Inhibited

Sodium and chloride are not reabsorbed, resulting in increased excretion of these ions



ATP-Dependent Na\*/K\* Pump Na\*/CI\* Cotransporter

ATP = adenosine triphosphate

Morrison RT, Sted Clin North Am. 1997;81:689-704.







#### Therapeutic uses:

Absorbed orally. Bound to plasma proteins, Secreted by the OAT in PT Hypertension -reduces blood pressure by reducing volume and producing mild vasodilation

#### Congestive heart failure

Hypercalciuria- to help prevent renal stones.

Nephrogenic diabetes insipidus (renal insensitivity to ADH): thiazides ↓ plasma volume => lowers GFR -> reabsorption of Na in PT ↑. Less Na+ and water reach CD so overall fluid conservation is obtained.

#### Adverse effects -

Electrolyte imbalance – hypokalemic metabolic alkalosis, hyponatremia, hypercalcemia, hyperuricemia, hypochloremia, cardiac arrhythmias. Hypokalemia increases risk of torsade de pointes caused by guanidine.

Hypotension -due to volume depletion

Hyperglycemia- in patients with diabetes or abnormal glucose tolerance tests.

Mechanisms poorly understood

Hyperlipidemia- an increase in the levels of LDL, total cholesterol and total triglycerides

Hypersensitivity

# POTASSIUM- SPARING DIURETICS

# Spironolactone - Mechanism Of Action

- Competitively Binds The Aldosterone Receptor Preventing The Hormone From Binding To Its Receptor
- Aldosterone's Normal Steroid-Nuclear DNA Transcription Is Halted

# OSMOTIC DIURETICS

# **Osmotic Diuretics**

#### mannitol

- Raises osmotic pressure of the plasma thus draws
   H<sub>2</sub>0 out of body tissues & produces osmotic diuresis
- Does not effect Na\* excretion

# Osmotic Diuretics: Therapeutic Uses

- Used in the treatment of patients in the early, oliguric phase of ARF
- To promote the excretion of toxic substances
- Reduction of intracranial pressure
- Treatment of cerebral edema

# PHARMACOLOGICAL ACTIONS OF DIURETICS

# HIGH CEILING/LOOP DIURETICS

- High ceiling diuretics may cause a substantial decrease upto 20% of the filtered load of Nacl and water.
- Loop diuretics such as FUROSEMIDE inhibits the body's ability to reabsorb sodium at the ascending loop in NEPHRON.

# **THIAZIDES**

- Thiazide diuretics such as Hydrochlorothiazide act on the distal convoluted tubule and inhibits the sodiumchloride symporter leading to retention of water in the urine.
- Frequent urination is due to the increased loss of water.
- The long term anti –hypertensive action is based on the thiazides which decrease preload and blood pressure.

# CARBONIC ANHYDRASE INHIBITORS

- Carbonic anhydrase inhibitors inhibits the enzyme carbonic anhydrase which is found in proximal convoluted tubule.
- This results in several effects including biocarbonate retention in the urine.
- Potassium retention in urine.
- Decreased sodium absorption.

Eg: Acetazolamide.

Methazolamine.

# POTASSIUM-SPARING DIURETICS

- These are diuretics which do not promote the secretion of potassium into the urine.
- Potassium is retained and not lost as much as with other diuretics.
- The term potassium sparing refers to an effects rather than a mechanism or location.

Eg: Aldosterone antagonists Spironolactone

- Which is a competitive antagonist of aldosterone.
- Aldosterone adds sodium channels in the cells of collecting duct and late distal tubule of the Nephron.
- Spirnolactone prevents aldosterone from entering the cells, and preventing sodium reabsorption.

Eg: Eplerenone.

Potassium canrenonate.

Epithelial sodium channel blockers

Eg: Amiloride.

Triamterence.

# OSMOTIC DIURETICS

The compounds as Mannitol are filtered in the glomerulus, but cannot be reabsorbed.

- Their presence lead to an increases in the osmolarity of the filtrate.
- To maintain osmotic balance, water is retained in the urine.
- Glucose like mannitol behave as an osmotic diuretic.
- Glucosuria causes a loss of hypotonic water & Na+, leading to a hypertonic state with signs of volume depletion.
- Such as Hypotention, Tachycardia.

# LOW CEILING DIURETICS

- The low celing diuretics are used to indicate an diuretic has a rapid flatting dose effect curve.
- It refers to a pharmacological profile, not a chemical structure.

# **MEDICINAL USES**

- Diuretics are used to treat
  - 1. Heart failures.
  - 2. Liver cirrhosis.
  - 3. Hypertension.
  - 4. Certain kidney diseases

## USES AND SIDE EFFECTS OF DIURETICS



# REFERENCES

- Essential of medical pharmacology by KD Tripathi,7<sup>th</sup> edition.
- Pharmacology by H.P Rang and M.A Dale.
- Pharmacology and Pharmacotherapeutics R.S.Satoskar and S.D.Bhandarkar.

